Constant sheaf

Constant sheaf

In mathematics, the constant sheaf on a topological space X associated to a set A is a sheaf of sets on X whose stalks are all equal to A. It is denoted by A or AX. The constant presheaf with value A is the presheaf that assigns to each open subset of X the value A, and all of whose restriction maps are the identity map AA. The constant sheaf associated to A is the sheafification of the constant presheaf associated to A.

In certain cases, the set A may be replaced with an object A in some category C (e.g. when C is the category of abelian groups, or commutative rings).

Constant sheaves of abelian groups appear in particular as coefficients in sheaf cohomology.

Basics

Let X be a topological space, and A a set. The sections of the constant sheaf A over an open set U may be interpreted as the continuous functions UA, where A is given the discrete topology. If U is connected, then these locally constant functions are constant. If f: X → {pt} is the unique map to the one-point space and A is considered as a sheaf on {pt}, then the inverse image f−1A is the constant sheaf A on X. The sheaf space of A is the projection map X × A → X (where A is given the discrete topology).

A detailed example

Constant presheaf on a two-point discrete space
Two-point discrete topological space

Let X be the topological space consisting of two points p and q with the discrete topology. X has four open sets: ∅, {p}, {q}, {p, q}. The five non-trivial inclusions of the open sets of X are shown in the chart.

A presheaf on X chooses a set for each of the four open sets of X and a restriction map for each of the nine inclusions (five non-trivial inclusions and four trivial ones). The constant presheaf with value Z, which we will denote F, is the presheaf which chooses all four sets to be Z, the integers, and all restriction maps to be the identity. F is a functor, hence a presheaf, because it is constant. Each of the restriction maps is injective, so F is a separated presheaf. F satisfies the gluing axiom, but it is not a sheaf because it fails the local identity axiom on the empty set. This is because the empty set is covered by the empty family of sets: Vacuously, any two sections of F over the empty set are equal when restricted to any set in the empty family. The local identity axiom would therefore imply that any two sections of F over the empty set are equal, but this is not true.

A similar presheaf G which satisfies the local identity axiom over the empty set is constructed as follows. Let G(∅) = 0, where 0 is a one-element set. On all non-empty sets, give G the value Z. For each inclusion of open sets, G returns either the unique map to 0, if the smaller set is empty, or the identity map on Z.

Intermediate step for the constant sheaf

Notice that as a consequence of the local identity axiom for the empty set, all the restriction maps involving the empty set are boring. This is true for any presheaf satisfying the local identity axiom for the empty set, and in particular for any sheaf.

G is a separated presheaf which satisfies the local identity axiom, but unlike F it fails the gluing axiom. {p, q} is covered by the two open sets {p} and {q}, and these sets have empty intersection. A section on {p} or on {q} is an element of Z, that is, it is a number. Choose a section m over {p} and n over {q}, and assume that mn. Because m and n restrict to the same element 0 over ∅, the gluing axiom requires the existence of a unique section s on G({p, q}) which restricts to m on {p} and n on {q}. But because the restriction map from {p, q} to {p} is the identity, s = m, and similarly s = n, so m = n, a contradiction.

Constant sheaf on a two-point topological space

G({p, q}) is too small to carry information about both {p} and {q}. To enlarge it so that it satisfies the gluing axiom, let H({p, q}) = ZZ. Let π1 and π2 be the two projection maps ZZZ. Define H({p}) = im(π1) = Z and H({q}) = im(π2) = Z. For the remaining open sets and inclusions, let H equal G. H is a sheaf called the constant sheaf on X with value Z. Because Z is a ring and all the restriction maps are ring homomorphisms, H is a sheaf of commutative rings.

References

  • Section II.1 of Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR0463157 
  • Section 2.4.6 of Tennison, B.R. (1975), Sheaf theory, ISBN 9780521207843 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Sheaf (mathematics) — This article is about sheaves on topological spaces. For sheaves on a site see Grothendieck topology and Topos. In mathematics, a sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space.… …   Wikipedia

  • Sheaf cohomology — In mathematics, sheaf cohomology is the aspect of sheaf theory, concerned with sheaves of abelian groups, that applies homological algebra to make possible effective calculation of the global sections of a sheaf F. This is the main step, in… …   Wikipedia

  • Locally constant function — In mathematics, a function f from a topological space A to a set B is called locally constant, iff for every a in A there exists a neighborhood U of a , such that f is constant on U .Every constant function is locally constant.Every locally… …   Wikipedia

  • Stalk (sheaf) — The stalk of a sheaf is a mathematical construction capturing the behaviour of a sheaf around a given point.Motivation and definitionSheaves are defined on open sets, but the underlying topological space X consists of points. It is reasonable to… …   Wikipedia

  • Constructible sheaf — In mathematics, a constructible sheaf is a sheaf of abelian groups over some topological space X, such that X is the union of a finite number of locally closed subsets on each of which the sheaf is a twisted constant sheaf. It is a generalization …   Wikipedia

  • Injective sheaf — In mathematics, injective sheaves of abelian groups are used to construct the resolutions needed to define sheaf cohomology (and other derived functors, such as sheaf Ext .). There is a further group of related concepts applied to sheaves: flabby …   Wikipedia

  • Exponential sheaf sequence — In mathematics, the exponential sheaf sequence is a fundamental short exact sequence of sheaves used in complex geometry.Let M be a complex manifold, and write O M for the sheaf of holomorphic functions on M . Let O M * be the subsheaf consisting …   Wikipedia

  • Étale cohomology — In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil… …   Wikipedia

  • De Rham cohomology — For Grothendieck s algebraic de Rham cohomology see Crystalline cohomology. In mathematics, de Rham cohomology (after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic… …   Wikipedia

  • Intersection homology — In topology, a branch of mathematics, intersection homology is an analogue of singular homology especially well suited for the study of singular spaces, discovered by Mark Goresky and Robert MacPherson in the fall of 1974 and developed by them… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”