Stalk (sheaf)

Stalk (sheaf)

The stalk of a sheaf is a mathematical construction capturing the behaviour of a sheaf around a given point.

Motivation and definition

Sheaves are defined on open sets, but the underlying topological space "X" consists of points. It is reasonable to attempt to isolate the behavior of a sheaf at a single fixed point "x" of "X". Conceptually speaking, we do this by looking at small neighborhoods of the point. If we look at a sufficiently small neighborhood of "x", the behavior of the sheaf mathcal{F} on that small neighborhood should be the same as the behavior of mathcal{F} at that point. Of course, no single neighborhood will be small enough, so we will have to take a limit of some sort.

The precise definition is as follows: the stalk of mathcal{F} at "x", usually denoted mathcal{F}_x, is::mathcal{F}_x := varinjlim_{U i x} mathcal{F}(U).Here the direct limit is indexed over all the open sets containing "x", with order relation induced by inclusion ( U, if Usupset V). By definition (or universal property) of the direct limit, this can be spelled out to the following: an element of the stalk is given by an element x_U in mathcal F(U), and two such sections x_U and x_V are considered equivalent if the restriction of the two sections coincides on the intersection U cap V. Note that the latter intersection is not empty, because it contains the point "x", so the condition is not void.

Alternative definition

There is another approach to defining a stalk which is useful in some contexts. Choose a point "x" of "X", and let "i" be the inclusion of the one point space {"x"} into "X". Then the stalk mathcal{F}_x is the same as the inverse image sheaf i^{-1}mathcal{F}. Notice that the only open sets of the one point space {"x"} are {"x"} and ∅, and there is no data over the empty set. Over {"x"}, however, we get::i^{-1}mathcal{F}({x}) = varinjlim_{Usupseteq{x mathcal{F}(U) = varinjlim_{U i x} mathcal{F}(U) = mathcal{F}_x.

Remarks

For some categories C the direct limit used to define the stalk may not exist. However, it exists for most categories which occur in practice, such as the category of sets or most categories of algebraic objects such as abelian groups or rings.

There is a natural morphism "F"("U") → "F""x" for any open set "U" containing "x": it takes a section "s" in "F"("U") to its "germ", that is, its equivalence class in the direct limit. This is a generalization of the usual concept of a germ, which can be recovered by looking at the stalks of the sheaf of continuous functions on "X".

Examples

Germs are more useful for some sheaves than for others.

Constant sheaves

The constant sheaf underline S associated to some set or group etc. "S" has the same set or group as stalks at every point: for any point "x", pick an open connected neighbourhood. The sections of underline S on a connected open equal "S" and restriction maps are the identities. Therefore the direct limit collapses to yield "S" as the stalk.

heaves of analytic functions

For example, in the sheaf of analytic functions on an analytic manifold, a germ of a function at a point determines the function in a small neighborhood of a point. This is because the germ records the function's power series expansion, and all analytic functions are by definition equal to their power series. Using analytic continuation, we find that the germ at a point determines the function on any connected open set where the function can be everywhere defined. (This does not imply that all the restriction maps of this sheaf are injective!)

heaves of smooth functions

In contrast, for the sheaf of smooth functions on a smooth manifold, germs contain some local information, but are not enough to reconstruct the function on any open neighborhood. For example, let "f" : RR be a bump function which is identically one in a neighborhood of the origin and identically zero far away from the origin. On any sufficiently small neighborhood containing the origin, "f" is identically one, so at the origin it has the same germ as the constant function with value 1. Suppose that we want to reconstruct "f" from its germ. Even if we know in advance that "f" is a bump function, the germ does not tell us how large its bump is. From what the germ tells us, the bump could be infinitely wide, that is, "f" could equal the constant function with value 1. We cannot even reconstruct "f" on a small open neighborhood "U" containing the origin, because we cannot tell whether the bump of "f" fits entirely in "U" or whether it is so large that "f" is identically one in "U".

On the other hand, germs of smooth functions can distinguish between the constant function with value one and the function 1 + e^{-1/x^2}, because the latter function is not identically one on any neighborhood of the origin. This example shows that germs contain more information than the power series expansion of a function, because the power series of 1 + e^{-1/x^2} is identically one. (This extra information is related to the fact that the stalk of the sheaf of smooth functions at the origin is a non-Noetherian ring. The Krull intersection theorem says that this cannot happen for a Noetherian ring.)

Quasi-coherent sheaves

On an affine scheme "X"=Spec "A", the stalk of a quasi-coherent sheaf "F" corresponding to an "A"-module "M" in a point "x" corresponding to a prime ideal "p" is just the localization "M""p".

kyscraper sheaf

On any topological space, the skyscraper sheaf associated to a closed point "x" and a group or ring "G" has the stalks "0" off "x" and "G" in "x" — whence the name skyscraper. The same property holds for any point "x" if the topological space in question is a T1 space, since every point of a T1 space is closed. This feature is the basis of the construction of Godement resolutions, used for example in algebraic geometry to get functorial injective resolutions of sheaves.

Properties of the stalk

As outlined in the introduction, stalks capture the local behaviour of a sheaf. As a sheaf is supposed to be determined by its local restrictions (see gluing axiom), it can be expected that the stalks capture a fair amount of the information that the sheaf is encoding. This is indeed true:
*A morphism of sheaves is an isomorphism or epimorphism, or monomorphism, respectively, if and only if the induced morphisms on all stalks have the same property. (However it is not true that two sheaves, all of whose stalks are isomorphic, are isomorphic, too, because there may be no map between the sheaves in question).In particular:
*A sheaf is zero (if we are dealing with sheafs of groups), if and only if all stalks of the sheaf vanish. Therefore the exactness of a given functor can be tested on the stalks, which is often easier as on can pass to smaller and smaller neighbourhoods.

Both statements are false for presheaves. However, stalks of sheaves and presheaves are tightly linked:
*Given a presheaf "P" and its sheafification "F", the stalks of "P" and "F" agree.

References

See the References in the article on sheaves.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Sheaf (mathematics) — This article is about sheaves on topological spaces. For sheaves on a site see Grothendieck topology and Topos. In mathematics, a sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space.… …   Wikipedia

  • Stalk — can mean: * loosely, a plant stem, or any structure resembling a plant stem ** more precisely, in botany, the filament of a stamen, pedicel, peduncle, petiole, scape, caudicle or stipe (botany) ** in mycology, a stipe (mycology) is the stem or… …   Wikipedia

  • Ideal sheaf — In algebraic geometry and other areas of mathematics, an ideal sheaf (or sheaf of ideals) is the global analogue of an ideal in a ring. The ideal sheaves on a geometric object are closely connected to its subspaces. Definition Let X be a… …   Wikipedia

  • Locally free sheaf — In sheaf theory, a field of mathematics, a sheaf of mathcal{O} X modules mathcal{F} on a ringed space X is called locally free if for each point pin X, there is an open neighborhood U of x such that mathcal{F}| U is free as an mathcal{O} X| U… …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

  • Ringed space — In mathematics, a ringed space is, intuitively speaking, a space together with a collection of commutative rings, the elements of which are functions on each open set of the space. Ringed spaces appear throughout analysis and are also used to… …   Wikipedia

  • Divisor (algebraic geometry) — In algebraic geometry, divisors are a generalization of codimension one subvarieties of algebraic varieties; two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil). These… …   Wikipedia

  • Proj construction — In algebraic geometry, Proj is a construction analogous to the spectrum of a ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. It is a fundamental tool in scheme …   Wikipedia

  • Ample line bundle — In algebraic geometry, a very ample line bundle is one with enough global sections to set up an embedding of its base variety or manifold M into projective space. An ample line bundle is one such that some positive power is very ample. Globally… …   Wikipedia

  • Differentiable manifold — A nondifferentiable atlas of charts for the globe. The results of calculus may not be compatible between charts if the atlas is not differentiable. In the middle chart the Tropic of Cancer is a smooth curve, whereas in the first it has a sharp… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”