Fredholm determinant

Fredholm determinant

In mathematics, the Fredholm determinant is a complex-valued function which generalizes the determinant of a matrix. It is defined for bounded operators on a Hilbert space which differ from the identity operator by a trace-class operator. The function is named after the mathematician Erik Ivar Fredholm.

Fredholm determinants have had many applications in mathematical physics, the most celebrated example being Gábor Szegő's limit formula, proved in response to a question raised by Lars Onsager and C. N. Yang on the spontaneous magnetization of the Ising model.

Definition

Let "H" be a Hilbert space and "G" the set of bounded invertible operators on "H" of the form "I" + "T", where "T" is a trace-class operator. "G" is a group because

: (I+T)^{-1} - I = - T(I+T)^{-1}.

It has a natural metric given by "d"("X", "Y") = ||"X" - "Y"||1, where || · ||1 is the trace-class norm.

If "H" is a Hilbert space, then so too is the "k"th exterior power λ"k" "H" with inner product

: (v_1 wedge v_2 wedge cdots wedge v_k, w_1 wedge w_2 wedge cdots wedge w_k) = { m det} , (v_i,w_j).

In particular

: e_{i_1} wedge e_{i_2} wedge cdots wedge e_{i_k}, qquad (i_1

gives an orthonormal basis of λ"k" "H" if ("e""i") is an orthonormal basis of "H". If "A" is a bounded operator on "H", then "A" functorially defines a bounded operator λ"k"("A")on λ"k" "H" by

: lambda^k(A) v_1 wedge v_2 wedge cdots wedge v_k = Av_1 wedge Av_2 wedge cdots wedge Av_k.

If "A" is trace-class, then λ"k"("A") is also trace-class with

: |lambda^k(A)|_1 le |A|_1^k/k!.

This shows that the definition of the Fredholm determinant given by

: { m det}, (I+ A) = sum_{k=0}^infty { m Tr} lambda^k(A)

makes sense.

Properties

* If "A" is a trace-class operator

: { m det}, (I+ zA) = sum_{k=0}^infty z^k{ m Tr} lambda^k(A)

defines an entire function such that

: |{ m det}, (I+ zA)| le exp (|z|cdot |A|_1).

* The function det("I" + "A") is continuous on trace-class operators, with

: |{ m det}(I+A) -{ m det}(I+B)| le |A-B|_1 exp (|A|_1 + |B|_1 +1).

* If "A" and "B" are trace-class then

: { m det}(I+A) cdot { m det}(I+B) = { m det}(I+A)(I+B).

* The function det defines a homomorphism of "G" into the multiplicative group C* of non-zero complex numbers.

* If "T" is in "G" and "X" is invertible,

: { m det}, XTX^{-1} ={ m det} , T.

* If "A" is trace-class, then

: { m det}, e^A = exp , { m Tr} (A).

Fredholm determinants of commutators

A function "F"("t") from ("a", "b") into "G" is said to be "differentiable" if "F"("t") -I is differentiable as a map into the trace-class operators, i.e. ifthe limit

: dot{F}(t) = lim_{h ightarrow 0} {F(t+h) - F(t)over h}

exists in trace-class norm.

If "g"("t") is a differentiable function with values in trace-class operators, then so too is exp "g"("t") and

: F^{-1} dot{F} = m id} - exp - { m ad} g(t)over { m ad} g(t)} cdot dot{g}(t),

where

: { m ad}(X)cdot Y = XY -YX.

Israel Gohberg and Mark Krein proved that if "F" is a differentiable function into "G", then "f" = det "F" is a differentiable map intoC* with

: f^{-1} dot{f} = det F^{-1} dot{F}.

This result was used by Joel Pincus, William Helton and Roger Howe to prove that if "A" and "B" are bounded operators with trace-class commutator"AB -BA", then

: { m det}, e^A e^B e^{-A} e^{-B} = exp { m Tr} (AB-BA).

zegő limit formula

Let "H" = "L"2 ("S"1) and let "P" be the orthogonal projection onto the Hardy space "H"2 ("S"1).

If "f" is a smooth function on the circle, let "m"("f") denote the corresponding multiplication operator on "H".

The commutator

:P"m"("f") - "m"("f")P

is trace-class.

Let "T"("f") is the Toeplitz operator on "H"2 ("S"1) defined by

: T(f) = Pm(f)P,

then the additive commutator

: T(f) T(g) - T(g) T(f)

is trace-class if "f" and "g" are smooth.

Berger and Shaw proved that

: { m tr}(T(f) T(g) - T(g) T(f)) = {1over 2pi i} int_0^{2pi} f dg.

If "f" and "g" are smooth, then

: T(e^{f+g})T(e^{-f}) T(e^{-g})

is in "G".

Harold Widom used the result of Pincus-Helton-Howe to prove that

: { m det} , T(e^f) T(e^{-f}) = exp sum_{ n>0} na_n a_{-n},

where

: f(z) =sum a_n z^n.

He used this to give a new proof of Gábor Szegő's celebrated limit formula:

: lim_{N ightarrow infty} { m det} P_N m(e^f) P_N = exp sum_{ n>0} na_n a_{-n},

where "P""N" is the projection onto the subspace of "H" spanned by 1, "z", ..., "z""N" and "a"0 = 0.

Szegő's limit formula was proved in 1951 in response to a question raised by the work Lars Onsager and C. N. Yang on the calculation of the spontaneous magnetization for the Ising model. The formula of Widom, which leads quite quickly to Szegő's limit formula, is also equivalent to the duality between bosons and fermions in conformal field theory. A singular version of Szegő's limit formula for functions supported on an arc of the circle was proved by Widom; it has been applied to establish probabilistic results on the eigenvalue distribution of random unitary matrices.

Informal presentation

The section below provides an informal definition for the Fredholm determinant. A proper definition requires a presentation showing that each of the manipulations are well-defined, convergent, and so on, for the given situation for which the Fredholm determinant is contemplated. Since the kernel "K" may be defined on a large variety of Hilbert spaces and Banach spaces, this is a non-trivial exercise.

The Fredholm determinant may be defined as

:det(I-lambda K) = exp left [-sum_n frac{lambda^n}{n} operatorname{Tr } K^n ight]

where "K" is an integral operator, the Fredholm operator. The trace of the operator is given by

:operatorname{Tr } K = int K(x,x),dx

and

:operatorname{Tr } K^2 = iint K(x,y) K(y,x) ,dxdy

and so on. The trace is well-defined for the Fredholm kernels, since these are trace-class or nuclear operators, which follows from the fact that the Fredholm operator is a compact operator.

The corresponding zeta function is

:zeta(s) = frac{1}{det(I-s K)}.

The zeta function can be thought of as the determinant of the resolvent.

The zeta function plays an important role in studying dynamical systems. Note that this is the same general type of zeta function as the Riemann zeta function; however, in this case, the corresponding kernel is not known. The hypothesis stating the existence of such a kernel is known as the Hilbert-Pólya conjecture.

References

*citation
last=Simon|first=Barry|title=Trace Ideals and Their Applications|series=Mathematical Surveys and Monographs|volume=120|publisher=American Mathematical Society|year=2005|id=ISBN 0821835815

External links

*The [http://front.math.ucdavis.edu/search?q=fredholm+determinants Front for the Math arXiv] has several papers utilizing Fredholm determinants.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Fredholm theory — In mathematics, Fredholm theory is a theory of integral equations. In the narrowest sense, Fredholm theory concerns itself with the solution of the Fredholm integral equation. In a broader sense, the abstract structure of Fredholm s theory is… …   Wikipedia

  • Fredholm kernel — In mathematics, a Fredholm kernel is a certain type of a kernel on a Banach space, associated with nuclear operators on the Banach space. They are an abstraction of the idea of the Fredholm integral equation and the Fredholm operator, and are one …   Wikipedia

  • Determinant — This article is about determinants in mathematics. For determinants in epidemiology, see Risk factor. In linear algebra, the determinant is a value associated with a square matrix. It can be computed from the entries of the matrix by a specific… …   Wikipedia

  • Determinant de Fredholm — Déterminant de Fredholm Le déterminant de Fredholm est une fonction analytique complexe qui généralise pour les opérateurs la notion de déterminant associée aux matrices. Le déterminant de Fredholm est défini pour les opérateurs à noyau continu.… …   Wikipédia en Français

  • Déterminant De Fredholm — Le déterminant de Fredholm est une fonction analytique complexe qui généralise pour les opérateurs la notion de déterminant associée aux matrices. Le déterminant de Fredholm est défini pour les opérateurs à noyau continu. Présentation informelle… …   Wikipédia en Français

  • Déterminant de fredholm — Le déterminant de Fredholm est une fonction analytique complexe qui généralise pour les opérateurs la notion de déterminant associée aux matrices. Le déterminant de Fredholm est défini pour les opérateurs à noyau continu. Présentation informelle… …   Wikipédia en Français

  • FREDHOLM (I.) — FREDHOLM IVAR (1866 1927) Mathématicien suédois dont le nom reste attaché à la théorie des équations intégrales. Né à Stockholm, Fredholm obtint son doctorat ès sciences à Uppsala en 1898, puis il fut attaché comme maître de conférences de… …   Encyclopédie Universelle

  • Déterminant de Fredholm — Pour les articles homonymes, voir Fredholm. Le déterminant de Fredholm est une fonction analytique complexe qui généralise pour les opérateurs la notion de déterminant associée aux matrices. Le déterminant de Fredholm est défini pour les… …   Wikipédia en Français

  • Fredholm — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Fredholm peut renvoyer à : Ivar Fredholm (1866 1927), mathématicien suédois, qui a donné son nom à : Déterminant de Fredholm ; Opérateur de …   Wikipédia en Français

  • Erik Ivar Fredholm — Infobox Scientist name = Erik Ivar Fredholm box width = image width =150px caption = Erik Ivar Fredholm birth date = April 7, 1866 birth place = death date = August 17, 1927 death place = residence = citizenship = nationality = Swedish ethnicity …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”