Connected dominating set

Connected dominating set

In graph theory, a connected dominated set and a maximum leaf spanning tree are two closely related structures defined on an undirected graph.

Contents

Definitions

A connected dominating set of a graph G is a set D of vertices with two properties:

  1. Any node in D can reach any other node in D by a path that stays entirely within D. That is, D induces a connected subgraph of G.
  2. Every vertex in G either belongs to D or is adjacent to a vertex in D. That is, D is a dominating set of G.

A minimum connected dominating set of a graph G is a connecting dominating set with the smallest possible cardinality among all connected dominating sets of G. The connected domination number of G is the number of vertices in the minimum connected dominating set.[1]

Any spanning tree T of a graph G has at least two leaves, vertices that have only one edge of T incident to them. A maximum leaf spanning tree is a spanning tree that has the largest possible number of leaves among all spanning trees of G. The max leaf number of G is the number of leaves in the maximum leaf spanning tree.[2]

Complementarity

If d is the connected domination number of an n-vertex graph G, and l is its max leaf number, then the three quantities d, l, and n obey the simple equation

\displaystyle n = d + l.[3]

If D is a connected dominating set, then there exists a spanning tree in G whose leaves include all vertices that are not in D: form a spanning tree of the subgraph induced by D, together with edges connecting each remaining vertex v that is not in D to a neighbor of v in D. This shows that lnd.

In the other direction, if T is any spanning tree in G, then the vertices of T that are not leaves form a connected dominating set of G. This shows that nld. Putting these two inequalities together proves the equality n = d + l.

Therefore, in any graph, the sum of the connected domination number and the max leaf number equals the total number of vertices. Computationally, this implies that finding the minimum dominating set is equally difficult to finding a maximum leaf spanning tree.

Algorithms

It is NP-complete to test whether there exists a connected dominating set with size less than a given threshold, or equivalently to test whether there exists a spanning tree with at least a given number of leaves. Therefore, it is believed that the minimum connected dominating set problem and the maximum leaf spanning tree problem cannot be solved in polynomial time.

When viewed in terms of approximation algorithms, connected domination and maximum leaf spanning trees are not the same: approximating one to within a given approximation ratio is not the same as approximating the other to the same ratio. There exists an approximation for the minimum connected dominating set that achieves a factor of 2 ln Δ + O(1), where Δ is the maximum degree of a vertex in G.[4] The maximum leaf spanning tree problem is MAX-SNP hard, implying that no polynomial time approximation scheme is likely.[5] However, it can be approximated to within a factor of 2 in polynomial time.[6]

Applications

Connected dominating set are useful in the computation of routing for mobile ad-hoc networks. In this application, a small connected dominating set is used as a backbone for communications, and nodes that are not in this set communicate by passing messages through neighbors that are in the set.[7]

The max leaf number has been employed in the development of fixed-parameter tractable algorithms: several NP-hard optimization problems may be solved in polynomial time for graphs of bounded max leaf number.[2]

References

  1. ^ Sampathkumar, E.; Walikar, HB (1979), "The connected domination number of a graph", J. Math. Phys. Sci 13 (6): 607–613 .
  2. ^ a b Fellows, Michael; Lokshtanov, Daniel; Misra, Neeldhara; Mnich, Matthias; Rosamond, Frances; Saurabh, Saket (2009), "The complexity ecology of parameters: an illustration using bounded max leaf number", Theory of Computing Systems 45 (4): 822–848, doi:10.1007/s00224-009-9167-9 .
  3. ^ Douglas, Robert J. (1992), "NP-completeness and degree restricted spanning trees", Discrete Mathematics 105 (1–3): 41–47, doi:10.1016/0012-365X(92)90130-8 .
  4. ^ Guha, S.; Khuller, S. (1998), "Approximation algorithms for connected dominating sets", Algorithmica 20 (4): 374–387, doi:10.1007/PL00009201 .
  5. ^ Galbiati, G.; Maffioli, F.; Morzenti, A. (1994), "A short note on the approximability of the maximum leaves spanning tree problem", Information Processing Letters 52 (1): 45–49, doi:10.1016/0020-0190(94)90139-2 .
  6. ^ Solis-Oba, Roberto (1998), "2-approximation algorithm for finding a spanning tree with maximum number of leaves", Proc. 6th European Symposium on Algorithms (ESA'98), Lecture Notes in Computer Science, 1461, Springer-Verlag, pp. 441–452, doi:10.1007/3-540-68530-8\_37 .
  7. ^ Wu, J.; Li, H. (1999), "On calculating connected dominating set for efficient routing in ad hoc wireless networks", Proceedings of the 3rd International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, ACM, pp. 7–14, doi:10.1145/313239.313261 .

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Dominating set — For Dominator in control flow graphs, see Dominator (graph theory). Dominating sets (red vertices). In graph theory, a dominating set for a graph G = (V, E) is a subset D of V such that every vertex not in D is joined to at… …   Wikipedia

  • Dominating set problem — The dominating set problem is an NP complete problem in graph theory.DefinitionAn instance of the dominating set problem consists of: * a graph G with a set V of vertices and a set E of edges, and * a positive integer K smaller than or equal to… …   Wikipedia

  • Maximal independent set — This article is about the combinatorial aspects of maximal independent sets of vertices in a graph. For other aspects of independent vertex sets in graph theory, see Independent set (graph theory). For other kinds of independent sets, see… …   Wikipedia

  • Independent set (graph theory) — The nine blue vertices form a maximum independent set for the Generalized Petersen graph GP(12,4). In graph theory, an independent set or stable set is a set of vertices in a graph, no two of which are adjacent. That is, it is a set I of vertices …   Wikipedia

  • Claw-free graph — A claw In graph theory, an area of mathematics, a claw free graph is a graph that does not have a claw as an induced subgraph. A claw is another name for the complete bipartite graph K1,3 (that is, a star graph with three edges, three leaves, and …   Wikipedia

  • List of NP-complete problems — Here are some of the more commonly known problems that are NP complete when expressed as decision problems. This list is in no way comprehensive (there are more than 3000 known NP complete problems). Most of the problems in this list are taken… …   Wikipedia

  • Circle graph — For the chart, see Pie chart. A circle with five chords and the corresponding circle graph. In graph theory, a circle graph is the intersection graph of a set of chords of a circle. That is, it is an undirected graph whose vertices can be… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Liste De Problèmes NP-Complets — Ceci est une liste des problèmes NP complets les plus connus en théorie de la complexité des algorithmes, exprimés sous la forme d un problèmes de la décision. Puisqu on connaît plus de 3000 problèmes NP complets, cette liste n est pas exhaustive …   Wikipédia en Français

  • Liste de problemes NP-complets — Liste de problèmes NP complets Ceci est une liste des problèmes NP complets les plus connus en théorie de la complexité des algorithmes, exprimés sous la forme d un problèmes de la décision. Puisqu on connaît plus de 3000 problèmes NP complets,… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”