Nonlinear Oscillations (journal)

Nonlinear Oscillations (journal)
Nonlinear Oscillations  
Discipline Mathematics
Language English
Edited by Anatolii M. Samoilenko
Publication details
Publisher Springer Science+Business Media on behalf of the Institute of Mathematics, National Academy of Sciences of Ukraine (Ukraine)
Publication history 1998–present
Frequency Quarterly
Impact factor
(2010)
0.158
Indexing
ISSN 1536-0059
Links

Nonlinear Oscillations is a quarterly peer-reviewed mathematical journal that was established in 1998. It is published by Springer Science+Business Media on behalf of the Institute of Mathematics, National Academy of Sciences of Ukraine. It covers research in the qualitative theory of differential or functional differential equations. This includes the qualitative analysis of differential equations with the help of symbolic calculus systems and applications of the theory of ordinary and functional differential equations in various fields of mathematical biology, electronics, and medicine.

Nonlinear Oscillations is a translation of the peer-reviewed Ukrainian journal Nelineinye Kolebaniya. The editor-in-chief is Anatoly M. Samoilenko (Institute of Mathematics, National Academy of Sciences of Ukraine, Kiev, Ukraine).

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Nikolay Bogolyubov — For the actor, see Nikolay Bogolyubov (actor). Nikolay Nikolaevich Bogolyubov Born 21 August 1909( …   Wikipedia

  • Vladimir Damgov — Vladimir Nikolov Damgov ( bg. Владимир Николов Дамгов) (November 22, 1947 June 20 2006) was a Bulgarian physicist, mathematician, union leader and parliamentarian. He contributed particularly to the application of Chaos theory to mechanical and… …   Wikipedia

  • Chaotic bubble — Many dynamical processes that generate bubbles are nonlinear, many exhibiting patterns consistent with mathematically chaotic dynamics (chaos theory). In such cases, chaotic bubbles can be said to occur. In most systems they arise out of a… …   Wikipedia

  • Quantitative models of the action potential — In neurophysiology, several mathematical models of the action potential have been developed, which fall into two basic types. The first type seeks to model the experimental data quantitatively, i.e., to reproduce the measurements of current and… …   Wikipedia

  • Vladimir Nikolov Damgov — Vladimir Damgov Vladimir Damgov Vladimir Damgov Naissance 22 novembre 1947 Sofia …   Wikipédia en Français

  • Vladimir Damgov — Naissance 22 novembre 1947 Sofia …   Wikipédia en Français

  • Chaos theory — This article is about chaos theory in Mathematics. For other uses of Chaos theory, see Chaos Theory (disambiguation). For other uses of Chaos, see Chaos (disambiguation). A plot of the Lorenz attractor for values r = 28, σ = 10, b = 8/3 …   Wikipedia

  • Numerical continuation — is a method of computing approximate solutions of a system of parameterized nonlinear equations, The parameter λ is usually a real scalar, and the solution an n vector. For a fixed parameter value λ,, maps Euclidean n space into itself. Often the …   Wikipedia

  • Nicolas Minorsky — (* 24. September 1885 in Korcheva, Oblast Twer, Russland; † 31. Juli 1970) war Erfinder eines Gyrometers.[1] Werdegang Nicolas Minorsky studierte an der Seefahrtschule in Sankt Petersburg und ab 1908 an der Fakultät für Elektrotechnik an der… …   Deutsch Wikipedia

  • Action potential — In physiology, an action potential is a short lasting event in which the electrical membrane potential of a cell rapidly rises and falls, following a consistent trajectory. Action potentials occur in several types of animal cells, called… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”