 Mean interparticle distance

Mean interparticle distance (or mean interparticle separation) is the mean distance between microscopic particles (usually atoms or molecules) in a macroscopic body.
Contents
Ambiguity
From the very general considerations, the mean interparticle distance is proportional to the size of the perparticle volume 1 / n, i.e.,
where n = N / V is the particle density. However, barring a few simple cases such as the ideal gas model, precise calculations of the proportionality factor are impossible analytically. Therefore, approximate expressions are often used. One such an estimation is the WignerSeitz radius
which corresponds to the radius of a sphere having perparticle volume 1 / n. Another popular definition is
 1 / n^{1 / 3},
corresponding to the length of the edge of the cube with the perparticle volume 1 / n. Evidently, the two definitions differ by a factor of , thus one has to exercise care if an article fails to define the parameter exactly. On the other hand, it is often used in qualitative statements where such a numeric factor is either irrelevant or plays an insignificant role, e.g.,
 "a potential energy ... is proportional to some power n of the interparticle distance r" (Virial theorem)
 "the interparticle distance is much larger than the thermal de Broglie wavelength" (Kinetic theory)
Ideal gas
Nearest neighbor distribution
We want to calculate probability distribution function of distance to the nearest neighbor (NN) particle. (The problem was first considered by Paul Hertz;^{[1]} for a modern derivation see, e.g.,.^{[2]}) Let us assume N particles inside a sphere having volume V, so that n = N / V. Note that since the particles in the ideal gas are noninteracting, the probability to find a particle at a certain distance from another particle is the same as probability to find a particle at the same distance from any other point; we shall use the center of the sphere.
An NN particle at distance r means exactly one of the N particles resides at that distance while the rest N − 1 particles are at larger distances, i.e., they are somewhere outside the sphere with radius r.
The probability to find a particle at the distance from the origin between r and r + dr is , while the probability to find a particle outside that sphere is . The soughtfor expression is then
where we substituted
Finally, taking the limit and using , we obtain
One can immediately check that
The distribution peaks at
Mean distance and higher NN distribution moments
or, using the t = x^{3} substitution,
where Γ is the gamma function. Thus,
In particular,
References
 ^ Hertz, Paul (1909). "Über den gegenseitigen durchschnittlichen Abstand von Punkten, die mit bekannter mittlerer Dichte im Raume angeordnet sind". Mathematische Annalen 67 (3): 387–398. doi:10.1007/BF01450410. ISSN 00255831. http://www.springerlink.com/content/q133104qq7596l37/. Retrieved 20110303.
 ^ Chandrasekhar, S. (19430101). "Stochastic Problems in Physics and Astronomy". Reviews of Modern Physics 15 (1): 1. Bibcode 1943RvMP...15....1C. doi:10.1103/RevModPhys.15.1. http://link.aps.org/doi/10.1103/RevModPhys.15.1. Retrieved 20110301.
See also
Categories:
Wikimedia Foundation. 2010.