Dual polygon

Dual polygon

In geometry, polygons are associated into pairs called duals, where the vertices of one correspond to the edges of the other.

Contents

Properties

Dorman Luke construction, showing a rhombus face being dual to a rectangle vertex figure.

Regular polygons are self-dual.

The dual of an isogonal (vertex-transitive) polygon is an isotoxal (edge-transitive) polygon. For example, the (isogonal) rectangle and (isotoxal) rhombus are duals.

In a cyclic polygon, smaller angles correspond to shorter sides, and bigger angles to bigger sides – further, congruent sides in the original yield congruent angles in the dual, and conversely. For example the dual of an acute isosceles triangle is an obtuse isosceles triangle.

In the Dorman Luke construction, each face of a dual polyhedron is the dual polygon of the corresponding vertex figure.

Kinds of duality

Rectification

The simplest qualitative construction of a dual polygon is a rectification operation, where the edges of a polygon are truncated down to vertices at the center of each original edge. New edges are formed between these new vertices.

This construction is not reversible. That is, the polygon generated by applying it twice is not, in general, congruent to the original polygon.

Polar reciprocation

As with dual polyhedra, one can take a circle (be it the inscribed circle, midcircle, or circumscribed circle) and perform polar reciprocation in it.

Projective duality

Under projective duality, the dual of a point is a line, and of a line is a point – thus the dual of a polygon is a polygon, with edges of the original corresponding to vertices of the dual and conversely.

From the point of view of the dual curve, where to each point on a curve one associates the point dual to its tangent line at that point, the projective dual can be interpreted thus:

  • every point on a side of a polygon has the same tangent line, which agrees with the side itself – they thus all map to the same vertex in the dual polygon
  • at a vertex, the "tangent lines" to that vertex are all lines through that point with angle between the two edges – the dual points to these lines are then the edge in the dual polygon.

Combinatorially

Combinatorially, one can define a polygon as a set of vertices, a set of edges, and an incidence relation (which vertices and edges touch): two adjacent vertices determine an edge, and dually, two adjacent edges determine a vertex. Then the dual polygon is obtained by simply switching the vertices and edges.

Thus for the triangle with vertices {A,B,C} and edges {AB,BC,CA}, the dual triangle has vertices {AB,BC,CA}, and edges {B,C,A}, where B connects AB & BC, and so forth.

This is not a particularly fruitful avenue, as combinatorially, there is a single family of polygons (given by number of sides); geometric duality of polygons is more varied, as are combinatorial dual polyhedra.

See also


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Dual curve — Curves, dual to each other; see below for properties. In projective geometry, a dual curve of a given plane curve C is a curve in the dual projective plane consisting of the set of lines tangent to C. There is a map from a curve to its dual,… …   Wikipedia

  • Dual polyhedron — The dual of a cube is an octahedron, shown here with vertices at the cube face centers …   Wikipedia

  • Polygon-Methode — Beispiel einer Dirichlet Zerlegung zu einer vorgegebenen Menge an Punkten. Die eingezeichneten Linien werden auch als Thiessen Polygone oder Voronoi Diagramm bezeichnet Mit Thiessen Polygonen bzw. Voronoi Diagramm oder Dirichlet Zerlegung wird… …   Deutsch Wikipedia

  • Star polygon — Set of regular star polygons {5/2} {7/2} …   Wikipedia

  • Regular polygon — A regular polygon is a polygon which is equiangular (all angles are congruent) and equilateral (all sides have the same length). Regular polygons may be convex or star.General propertiesThese properties apply to both convex and star regular… …   Wikipedia

  • Thiessen-Polygon — Beispiel einer Dirichlet Zerlegung zu einer vorgegebenen Menge an Punkten. Die eingezeichneten Linien werden auch als Thiessen Polygone oder Voronoi Diagramm bezeichnet Mit Thiessen Polygonen bzw. Voronoi Diagramm oder Dirichlet Zerlegung wird… …   Deutsch Wikipedia

  • Voronoi-Polygon — Beispiel einer Dirichlet Zerlegung zu einer vorgegebenen Menge an Punkten. Die eingezeichneten Linien werden auch als Thiessen Polygone oder Voronoi Diagramm bezeichnet Mit Thiessen Polygonen bzw. Voronoi Diagramm oder Dirichlet Zerlegung wird… …   Deutsch Wikipedia

  • Nintendo Dual Screen — Nintendo DS Hersteller Nintendo …   Deutsch Wikipedia

  • Rectangle — Family Orthotope Type Quadrilateral Edges and vertices 4 Schläfli symbol {}x{} …   Wikipedia

  • Rhombus — For other uses, see Rhombus (disambiguation). Rhombus Two rhombi Type quadrilateral, bipyramid Edges and vertices …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”