Gershgorin circle theorem — In mathematics, the Gershgorin circle theorem may be used to bound the spectrum of a square matrix. It was first published by the Belarusian mathematician Semyon Aranovich Gershgorin in 1931. The spelling of S. A. Gershgorin s name has been… … Wikipedia
Corona theorem — In mathematics, the corona theorem is a result about the spectrum of the bounded holomorphic functions on the open unit disc, conjectured by Schark (1961) and proved by Lennart Carleson (1962). The commutative Banach algebra and Hardy space… … Wikipedia
Gauss–Bonnet theorem — The Gauss–Bonnet theorem or Gauss–Bonnet formula in differential geometry is an important statement about surfaces which connects their geometry (in the sense of curvature) to their topology (in the sense of the Euler characteristic). It is named … Wikipedia
Morera's theorem — If the integral along every C is zero, then ƒ is holomorphic on D. In complex analysis, a branch of mathematics, Morera s theorem, named after Giacinto Morera, gives an important criterion for proving that a function is holomorphic. Morera s… … Wikipedia
Bertrand–Diquet–Puiseux theorem — In the mathematical study of the differential geometry of surfaces, the Bertrand–Diquet–Puiseux theorem expresses the Gaussian curvature of a surface in terms of the circumference of a geodesic circle, or the area of a geodesic disc. The theorem… … Wikipedia
Fundamental theorem of algebra — In mathematics, the fundamental theorem of algebra states that every non constant single variable polynomial with complex coefficients has at least one complex root. Equivalently, the field of complex numbers is algebraically closed.Sometimes,… … Wikipedia
De Bruijn–Erdős theorem (graph theory) — This article is about coloring infinite graphs. For the number of lines determined by a finite set of points, see De Bruijn–Erdős theorem (incidence geometry). In graph theory, the De Bruijn–Erdős theorem, proved by Nicolaas Govert de Bruijn and… … Wikipedia
Ostrowski–Hadamard gap theorem — In mathematics, the Ostrowski–Hadamard gap theorem is a result about the analytic continuation of complex power series whose non zero terms are of orders that have a suitable gap between them. Such a power series is badly behaved in the sense… … Wikipedia
Rouché's theorem — In mathematics, especially complex analysis, Rouché s theorem tells us that if the complex valued functions f and g are holomorphic inside and on some closed contour C , with | g ( z )| < | f ( z )| on C , then f and f + g have the same number of … Wikipedia
Riemann mapping theorem — In complex analysis, the Riemann mapping theorem states that if U is a simply connected open subset of the complex number plane Bbb C which is not all of Bbb C, then there exists a biholomorphic (bijective and holomorphic) mapping f, from U, onto … Wikipedia