Riemann mapping theorem

Riemann mapping theorem

In complex analysis, the Riemann mapping theorem states that if U is a simply connected open subset of the complex number plane Bbb C which is not all of Bbb C, then there exists a biholomorphic (bijective and holomorphic) mapping f, from U, onto open unit disk D,.

:f : U ightarrow D ,


:D={zin {Bbb C} :|z|<1}

Intuitively, the condition that U be simply connected means that U does not contain any “holes”. The fact that f is biholomorphic implies that it is a conformal map and therefore angle-preserving. Intuitively, such a map preserves the shape of any sufficiently small figure, while possibly rotating and scaling (but not reflecting) it.

Henri Poincaré proved that the map f is essentially unique: if z_0 is an element of U and φ is an arbitrary angle, then there exists precisely one f as above with the additional properties that f maps z_0 into 0 and that the argument of the derivative of f at the point z_0 is equal to φ. This is an easy consequence of the Schwarz lemma.

As a corollary of the theorem, any two simply connected open subsets of the Riemann sphere (which each lack at least two points of the sphere) can be conformally mapped into each other (because conformal equivalence is an equivalence relation).


The theorem was stated (under the assumption that the boundary of U is piecewise smooth) by Bernhard Riemann in 1851 in his PhD thesis. Lars Ahlfors wrote once, concerning the original formulation of the theorem, that it was “ultimately formulated in terms which would defy any attempt of proof, even with modern methods”. Riemann's proof depended on the Dirichlet principle (whose name was created by Riemann himself), which was considered sound at the time. However, Karl Weierstraß found that this principle was not universally valid. Later, David Hilbert was able to prove that, to a large extent, the Dirichlet principle is valid under the hypothesis that Riemann was working with. However, in order to be valid the Dirichlet principle needs certain hypotheses concerning the boundary of U which are not valid for simply connected domains in general. Simply connected domains with arbitrary boundaries were first treated in 1900 (by W. F. Osgood).

The first proof of the theorem is due to Constantin Carathéodory, who published it in 1912. His proof used Riemann surfaces and it was simplified by Paul Koebe two years later in a way which did not require them.

Another proof, due to Leopold Fejér and to Frigyes Riesz, was published in 1922 and it was rather shorter than the previous ones. In this proof, like in Riemann's proof, the desired mapping was obtained as the solution of an extremal problem. The Fejér-Riesz proof was further simplified by Alexander Ostrowski and by Carathéodory.

Why is this theorem impressive?

To better understand how unique and powerful the Riemann mapping theorem is, consider the following facts:

* Even relatively simple Riemann mappings, say a map from the interior of a circle to the interior of a square, have no explicit formula using only elementary functions.
* Simply connected open sets in the plane can be highly complicated, for instance the boundary can be a nowhere differentiable fractal curve of infinite length, even if the set itself is bounded. The fact that such a set can be mapped in an "angle-preserving" manner to the nice and regular unit disc seems counter-intuitive.
* The analog of the Riemann mapping theorem for doubly connected domains is not true. In fact, there are no conformal maps between annuli except inversion and multiplication by constants, so the annulus { z : 1 < |z| < 2 } is not conformally equivalent to the annulus { z : 1 < |z| < 4 } (as can be proven using extremal length). However, any doubly connected domain except the punctured plane is conformally equivalent to some annulus { z : r < |z| < 1 } with 0 ≤r<1.
* The analog of the Riemann mapping theorem in three real dimensions or above is not even remotely true. In fact, the family of conformal maps in three dimensions is very poor, and essentially contains only Möbius transformations.
* Even if we allow arbitrary homeomorphisms in higher dimensions, we can find contractible manifolds that are not homeomorphic to the ball, such as the Whitehead continuum.
* The Riemann mapping theorem is the easiest way to prove that any two simply connected domains in the plane are homeomorphic. Even though the class of continuous functions is infinitely larger than that of conformal maps, it is not easy to construct a one-to-one function onto the disk knowing only that the domain is simply connected.

A proof sketch

Given U and z_0, we want to construct a function f which maps U to the unit disk and z_0 to 0. For this sketch, we will assume that U is bounded and its boundary is smooth, much like Riemann did. Write:f(z)=(z-z_0)exp(g(z)) ,!where g=u+iv is some (to be determined) holomorphic function with real part u and imaginary part v. It is then clear that "z"0 is the only zero of "f". We require |f(z)|=1 for z on the boundary of U, so we need u(z)=-log|z-z_0| on the boundary. Since u is the real part of a holomorphic function, we know that u is necessarily a harmonic function, i.e. it satisfies Laplace's equation.

The question then becomes: does a real-valued harmonic function u exist that is defined on all of U and has the given boundary condition? The positive answer is provided by the Dirichlet principle. Once the existence of "u" has been established, the Cauchy-Riemann equations for the holomorphic function g allow us to find v (this argument depends on the assumption that U be simply connected). Once u and v have been constructed, one has to check that the resulting function f does indeed have all the required properties.

Uniformization theorem

The Riemann mapping theorem can be generalized to the context of Riemann surfaces: If "U" is a simply-connected open subset of a Riemann surface, then "U" is biholomorphic to one of the following: the Riemann sphere, the complex plane or the open unit disk. This is known as the uniformization theorem.


*John B. Conway, "Functions of one complex variable", Springer-Verlag, 1978, ISBN 0-387-90328-3
*John B. Conway, "Functions of one complex variable II", Springer-Verlag, 1995, ISBN 0-387-94460-5
*Reinhold Remmert, "Classical topics in complex function theory", Springer-Verlag, 1998, ISBN 0-387-98221-3
*Bernhard Riemann, " [http://www.emis.de/classics/Riemann/Grund.pdf Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse] ", Göttingen, 1851

External links

* [http://planetmath.org/encyclopedia/ProofOfRiemannMappingTheorem.html Proof of the Riemann mapping theorem] , from PlanetMath

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Measurable Riemann mapping theorem — In the mathematical theory of quasiconformal mappings in two dimensions, the measurable Riemann mapping theorem, proved by Morrey (1936, 1938), generalizes the Riemann mapping theorem from conformal to quasiconformal homeomorphisms, and is… …   Wikipedia

  • Riemann-Roch theorem for smooth manifolds — In mathematics, a Riemann Roch theorem for smooth manifolds is a version of results such as the Hirzebruch Riemann Roch theorem or Grothendieck Riemann Roch theorem (GRR) without a hypothesis making the smooth manifolds involved carry a complex… …   Wikipedia

  • Riemann surface — For the Riemann surface of a subring of a field, see Zariski–Riemann space. Riemann surface for the function ƒ(z) = √z. The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real… …   Wikipedia

  • Riemann-Hilbert — For the original problem of Hilbert concerning the existence of linear differential equations having a given monodromy group see Hilbert s twenty first problem. In mathematics, Riemann Hilbert problems are a class of problems that arise, inter… …   Wikipedia

  • Mapping class group — In mathematics, in the sub field of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a discrete group of symmetries of the space. Contents 1 Motivation 2… …   Wikipedia

  • Riemann sphere — The Riemann sphere can be visualized as the complex number plane wrapped around a sphere (by some form of stereographic projection – details are given below). In mathematics, the Riemann sphere (or extended complex plane), named after the 19th… …   Wikipedia

  • Circle packing theorem — Example of the circle packing theorem on K5, the complete graph on five vertices, minus one edge. The circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) describes the possible tangency relations between circles in the plane …   Wikipedia

  • Bernhard Riemann — Infobox Scientist name =Bernhard Riemann box width =300px image width =225px caption =Bernhard Riemann, 1863 birth date =September 17, 1826 birth place =Breselenz, Germany death date =death date and age|1866|7|20|1826|9|17 death place =Selasca,… …   Wikipedia

  • Quasiconformal mapping — In mathematics, the concept of quasiconformal mapping, introduced as a technical tool in complex analysis, has blossomed into an independent subject with various applications. Informally, a conformal homeomorphism is a homeomorphism between plane …   Wikipedia

  • de Branges's theorem — In complex analysis, the Bieberbach conjecture or de Branges s theorem, posed by Ludwig Bieberbach (1916) and proven by Louis de Branges (1985), states a necessary condition on a holomorphic function to map the open unit disk of the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”