- Bertrand–Diquet–Puiseux theorem
In the mathematical study of the
differential geometry of surfaces , the Bertrand–Diquet–Puiseux theorem expresses theGaussian curvature of a surface in terms of thecircumference of ageodesic circle, or the area of a geodesic disc. The theorem is named forJoseph Bertrand ,Victor Puiseux , and V Diquet.Let "p" be a point on a smooth surface "M". The geodesic circle of radius "r" centered at "p" is the set of all points whose geodesic distance from "p" is equal to "r". Let "C"("r") denote the circumference of this circle, and "A"("r") denote the area of the disc contained within the circle. The Bertrand–Diquet–Puiseux theorem asserts that
:
The theorem is closely related to the
Gauss–Bonnet theorem .References
*citation | last=Berger|first=Marcel | authorlink=Marcel Berger|title= A Panoramic View of Riemannian Geometry | publisher=Springer-Verlag | year=2004 | id = ISBN 3-540-65317-1
*citation|title=Démonstration d'un théorème de Gauss|first1=J|last1=Bertrand|first2=CF|last2=Diquet|first3=V|last3=Puiseux|journal=Journal de Mathématiques|year=1848|volume=13|pages=80–90
*
Wikimedia Foundation. 2010.