Cramér–von Mises criterion

Cramér–von Mises criterion

In statistics the Cramér–von Mises criterion is a criterion used for judging the goodness of fit of a cumulative distribution function F * compared to a given empirical distribution function Fn, or for comparing two empirical distributions. It is also used as a part of other algorithms, such as minimum distance estimation. It is defined as

\omega^2 = \int_{-\infty}^{\infty} [F_n(x)-F^*(x)]^2\,\mathrm{d}F^*(x)

In one-sample applications F * is the theoretical distribution and Fn is the empirically observed distribution. Alternatively the two distributions can both be empirically estimated ones; this is called the two-sample case.

The criterion is named after Harald Cramér and Richard Edler von Mises who first proposed it in 1928-1930. The generalization to two samples is due to Anderson.[1]

The Cramér–von Mises test is an alternative to the Kolmogorov-Smirnov test.

Contents

Cramér–von Mises test (one sample)

Let x_1,x_2,\cdots,x_n be the observed values, in increasing order. Then the statistic is[1]:1153[2]

T = n \omega^2 = \frac{1}{12n} + \sum_{i=1}^n \left[ \frac{2i-1}{2n}-F(x_i) \right]^2.

If this value is larger than the tabulated value the hypothesis that the data come from the distribution F can be rejected.

Watson test

A modified version of the Cramér–von Mises test is the Watson test[3] which uses the statistic U2, where[2]

U^2= T-n( \bar{F}-\tfrac{1}{2} )^2,

where

\bar{F}=\frac{1}{n} \sum F(x_i).

Cramér–von Mises test (two samples)

Let x_1,x_2,\cdots,x_N and y_1,y_2,\cdots,y_M be the observed values in the first and second sample respectively, in increasing order. Let r_1,r_2,\cdots,r_N be the ranks of the x's in the combined sample, and let s_1,s_2,\cdots,s_M be the ranks of the y's in the combined sample. Anderson[1]:1149 shows that

T = N \omega^2 = \frac{U}{N M (N+M)}-\frac{4 M N - 1}{6(M+N)}

where U is defined as

U = N \sum_{i=1}^N (r_i-i)^2 + M \sum_{j=1}^M (s_j-j)^2

If the value of T is larger than the tabulated values,[1]:1154–1159 the hypothesis that the two samples come from the same distribution can be rejected. (Some books[specify] give critical values for U, which is more convenient, as it avoids the need to compute T via the expression above. The conclusion will be the same).

The above assumes there are no duplicates in the x, y, and r sequences. So xi is unique, and its rank is i in the sorted list x1,...xN. If there are duplicates, and xi through xj are a run of identical values in the sorted list, then one common approach is the midrank [4] method: assign each duplicate a "rank" of (i + j) / 2. In the above equations, in the expressions (rii)2 and (sjj)2, duplicates can modify all four variables ri, i, sj, and j.

Notes

  1. ^ a b c d Anderson (1962)
  2. ^ a b Pearson & Hartley (1972) p 118
  3. ^ Watson (1961)
  4. ^ Ruymgaart (1980)

References

Further reading

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Cramér-von-Mises criterion — In statistics the Cramér von Mises criterion is a form of minimum distance estimation used for judging the goodness of fit of a probability distribution F^* compared to a given distribution F is given by:n W^2 = n int { infty}^{infty} [F(x)… …   Wikipedia

  • Cramér-von-Mises-Test — Der Cramér von Mises Test ist ein statistischer Test, mit dem untersucht werden kann, ob die Häufigkeitsverteilung der Daten einer Stichprobe von einer vorgegebenen hypothetischen Wahrscheinlichkeitsverteilung abweicht (Ein Stichproben Fall),… …   Deutsch Wikipedia

  • Richard von Mises — Infobox Scientist name = Richard von Mises box width = image width =150px caption = Richard von Mises birth date = 19 April 1883 birth place = Lemberg death date = 14 July 1953 death place = Boston residence = citizenship = nationality =… …   Wikipedia

  • Harald Cramér — Born 25 September 1893(1893 09 25) Stockholm, Sweden …   Wikipedia

  • Minimum distance estimation — (MDE) is a statistical method for fitting a mathematical model to data, usually the empirical distribution. Contents 1 Definition 2 Statistics used in estimation 2.1 Chi square criterion …   Wikipedia

  • List of statistics topics — Please add any Wikipedia articles related to statistics that are not already on this list.The Related changes link in the margin of this page (below search) leads to a list of the most recent changes to the articles listed below. To see the most… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Normality test — In statistics, normality tests are used to determine whether a data set is well modeled by a normal distribution or not, or to compute how likely an underlying random variable is to be normally distributed. More precisely, they are a form of… …   Wikipedia

  • Test de normalité — En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d adéquation (ou tests d ajustement, tests permettant de comparer des …   Wikipédia en Français

  • Tests de normalité — Test de normalité En statistiques, les tests de normalité permettent de vérifier que des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d adéquation (ou tests d ajustement, tests… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”