- Chebyshev's bias
-
In prime number theory, Chebyshev's bias is the phenomenon that most of the time, there are more primes of the form 4k + 3 than of the form 4k + 1, up to the same limit. This phenomenon was first observed by Chebyshev in 1853.
Description
Let π(x; 4, 1) denote the number of primes of the form 4k + 1 up to x. Similarly, let π(x; 4, 3) denote the number of primes of the form 4k + 3 up to x. By the prime number theorem, extended to arithmetic progression,
i.e., half of the primes are of the form 4k+1, and half of the form 4k + 3. A reasonable guess would be that π(x;4,1)>π(x; 4, 3) and π(x; 4, 1) < π(x; 4, 3) each also occur 50 % of the time. This, however, is not supported by numerical evidence—in fact, π(x,4,3)>π(x;4,1) occurs much more frequently.
In general, if 0 < a,b < q are integers, (a, q) = (b, q) = 1, a is a quadratic residue, b is a quadratic nonresidue mod q, then π(x; q, b) > π(x; q, a) occurs more often than not. This has been proved only by assuming strong forms of the Riemann hypothesis. The conjecture of Knapowski and Turán, however, that the density of the numbers x for which π(x; 4, 3) > π(x; 4, 1) holds, is 1, turned out to be false. They, however, do have a logarithmic density, which is approximately 0.9959...(Rubinstein—Sarnak, 1994).
See also
- Shanks–Rényi race problem
References
- P.L. Chebyshev: Lettre de M. le Professeur Tchébychev à M. Fuss sur un nouveaux théorème relatif aux nombres premiers contenus dans les formes 4n + 1 et 4n + 3 , Bull. Classe Phys. Acad. Imp. Sci. St. Petersburg, 11 (1853), 208.
- Granville, Andrew; Martin, Greg (2006). "Prime number races". Amer. Math. Monthly 113: 1–33. JSTOR 27641834.
- J. Kaczorowski: On the distribution of primes (mod 4), Analysis, 15 (1995), 159–171.
- S. Knapowski, Turan: Comparative prime number theory,I, Acta Math. Acad. Sci. Hung., 13 (1962), 299–314.
- Rubinstein, M.; Sarnak, P. (1994). "Chebyshev's bias". Experiment. Math. 3: 173–197.
- Weisstein, Eric W., "Chebyshev Bias" from MathWorld.
- (sequence A007350 in OEIS) (where prime race 4n-1 versus 4n+1 changes leader)
Categories:- Analytic number theory
- Theorems in number theory
- Prime numbers
Wikimedia Foundation. 2010.