- Chebyshev–Markov–Stieltjes inequalities
-
In mathematical analysis, the Chebyshev–Markov–Stieltjes inequalities are inequalities related to the problem of moments that were formulated in the 1880s by Pafnuty Chebyshev and proved independently by Andrey Markov and (somewhat later) by Thomas Jan Stieltjes.[1] Informally, they provide sharp bounds on a measure from above and from below in terms of its first moments.
Formulation
Given m0,...,m2m-1 ∈ R, consider the collection C of measures μ on R such that
for k = 0,1,...,2m − 1 (and in particular the integral is defined and finite).
Let P0,P1, ...,Pm be the first m + 1 orthogonal polynomials with respect to μ ∈ C, and let be the zeros of Pm. It is not hard to see that the polynomials P0,P1, ...,Pm-1 and the numbers are the same for every μ ∈ C, and therefore are determined uniquely by m0,...,m2m-1.
Denote
- .
Theorem For j = 1,2,...,m, and any μ ∈ C,
See also
- Truncated moment problem
References
- ^ Akhiezer, N.I. (1965). The Classical Moment Problem and Some Related Questions in Analysis. Oliver & Boyd.
Categories:- Mathematical analysis
- Inequalities
Wikimedia Foundation. 2010.