Yang–Mills existence and mass gap

Yang–Mills existence and mass gap

The Clay Mathematics Institute has offered the prize of USD 1,000,000 for each of 7 great problems in mathematics. One of them is a proof that Yang-Mills theory exists according to the rigorous standards of mathematical physics (i.e. constructive quantum field theory) and it has a mass gap. The latter means that the lightest one-particle state in this theory must have a strictly positive mass.

Background

Most nontrivial (i.e. interacting) quantum field theories that we know of in 4D are effective field theories with a cutoff scale. Since the beta-function is positive for most models, it appears that most such models have a Landau pole as it is not at all clear whether or not they have nontrivial UV fixed points. This means that if such a QFT is well-defined at all scales, as it has to be to satisfy the axioms of axiomatic quantum field theory, it would have to be trivial (i.e. a free field theory).

However, the quantum Yang-Mills theory (no quarks) with a non-abelian gauge group is an exception. It has a property known as asymptotic freedom, meaning that it has a trivial UV fixed point. Because of this, this is the simplest model to pin our hopes on for a nontrivial constructive QFT model in 4D. (QCD is more complicated owing to its use of fermionic quarks).

It has already been well proven at the standards of theoretical physics, but not mathematical physics, that the quantum Yang–Mills theory for a non-abelian Lie group exhibits a property known as confinement. This is covered in more detail in the relevant QCD articles (QCD, color confinement, lattice gauge theory, etc.), although not at the level of rigor of mathematical physics. Basically, this means that beyond a certain scale, known as the QCD scale (or since this is a quarkless model, we should say confinement scale), the color charges are connected by chromodynamic flux tubes leading to a linear potential (the tension of the "string" multiplied by its length) between the charges. This means that it is impossible to have free color charges like free gluons. In the absence of such a confinement, we would expect to see massless gluons, but since they are confined, all we see are color-neutral bound states of gluons, called glueballs. All the glueballs are massive, which is why we expect a mass gap.

Results from lattice gauge theory have shown beyond the doubt of many that this model exhibits confinement (as indicated by an area law for the falloff of the VEV of a Wilson loop), but unfortunately, this isn't mathematically rigorous.

ee also

*Yang-Mills theory

External links

* [http://www.claymath.org/millennium/Yang-Mills_Theory/ The Millennium Prize Problems: Yang–Mills and Mass Gap]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Mass gap — Quantum field theory (Feynman diagram) …   Wikipedia

  • Navier–Stokes existence and smoothness — Millennium Prize Problems P versus NP problem Hodge conjecture Poincaré conjecture Riemann hypo …   Wikipedia

  • Equations de Yang-Mills — Équations de Yang Mills Une théorie de Yang Mills est un type de théorie de jauge non abélienne, dont le premier exemple a été introduit dans les années 1950 par les physiciens Chen Ning Yang, et Robert Mills pour obtenir une description… …   Wikipédia en Français

  • Équations de Yang-Mills — Une théorie de Yang Mills est un type de théorie de jauge non abélienne, dont le premier exemple a été introduit dans les années 1950 par les physiciens Chen Ning Yang, et Robert Mills pour obtenir une description cohérente de l interaction… …   Wikipédia en Français

  • Équations de yang-mills — Une théorie de Yang Mills est un type de théorie de jauge non abélienne, dont le premier exemple a été introduit dans les années 1950 par les physiciens Chen Ning Yang, et Robert Mills pour obtenir une description cohérente de l interaction… …   Wikipédia en Français

  • Théorie de Yang-Mills — Une théorie de Yang Mills est un type de théorie de jauge non abélienne, dont le premier exemple a été introduit dans les années 1950 par les physiciens Chen Ning Yang, et Robert Mills pour obtenir une description cohérente de l interaction… …   Wikipédia en Français

  • Birch and Swinnerton-Dyer conjecture — Millennium Prize Problems P versus NP problem Hodge conjecture Poincaré conjecture Riemann hypo …   Wikipedia

  • Millennium Prize Problems — This article is about the math prizes. For the technology prize, see Millennium Technology Prize. Millennium Prize Problems P versus NP problem Hodge conjecture …   Wikipedia

  • Riemann hypothesis — The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line Re(s) = 1/2. The first non trivial zeros can be seen at Im(s) = ±14.135, ±21.022 and ±25.011 …   Wikipedia

  • Gauge theory — For a generally accessible and less technical introduction to the topic, see Introduction to gauge theory. In physics, a gauge theory is a type of field theory in which the Lagrangian is invariant under a continuous group of local transformations …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”