Miquel's theorem

Miquel's theorem
A diagram showing circles passing through the vertices of a triangle ABC and points , and on the adjacent sides of the triangle intersecting at a common point, M.

Miquel's theorem is a theorem in geometry, named after Auguste Miquel, about the intersection pattern of circles defined from six points on a triangle. From any triangle, and any three points on the three sides of the triangle, one may define three circles that each pass through a vertex of the triangle and the two points on its adjacent sides; Miquel's theorem states that these three circles meet in a single point, called the Miquel point.

Formally, let ABC be a triangle, and let , and be three points on sides BC, AC, and AB of the triangle, respectively. Draw three circles circumscribing the three triangles AB´C´, A´BC´, and A´B´C. Then Miquel's theorem states that these three circles intersect in a single point M, the Miquel point. In addition, the three angles MA´B, MB´C and MC´A (green in the diagram) are all equal to each other, as are the three angles MA´C, MB´A and MC´B.

If the fractional distances of points , and along the sides BC, CA and AB are respectively da, db and dc, and d_x^{\,'} = 1- d_x, the Miquel point is given in trilinear co-ordinates (x : y : z) by:

x=a \left(-a^2 d_a d_a^{\,'} + b^2 d_a d_b + c^2 d_a^{\,'} d_c^{\,'} \right)
y=b \left(a^2 d_a^{\,'} d_b^{\,'} - b^2 d_b d_b^{\,'} + c^2 d_b d_c \right)
z=c \left(a^2 d_a d_c + b^2 d_b^{\,'} d_c^{\,'} - c^2 d_c d_c^{\,'} \right).

In the case d_a = d_b = d_c = \frac{1}{2}, the Miquel point is the circumcentre.

This theorem can be reversed to say that for any three circles intersecting at M, a line can be drawn from any point A on one of the circles, through to the intersection, B, with another circle. This point is then connected to a point C of the third circle with a line passing through . Given this construction, C, and A are collinear. That is to say, the triangle ABC will always pass though the points , and .

Miquel's six circles theorem states that if five circles share four triple-points of intersection then the remaining four points of intersection lie on a sixth circle.

This can be extended to a circle with four points. Given four points, A, B, C, and D on a circle, and four circles passing through each adjacent pair of points, the four intersections of adjacent circles (i.e., the circle pairs also sharing an intersection on the original circle) W, X, Y and Z also lie on a common circle. This result is known as Miquel's six circles theorem.

See also

Bibliography

  • Wells, David (1991), The Penguin Dictionary of Curious and Interesting Geometry, New York: Penguin Books, pp. 151–152, ISBN 0-14-011813-6 
  • Miquel, Auguste (1838), "Mémoire de Géométrie", Journal de mathématiques pures et appliquées de Liouville 1: 485–487 .

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Five circles theorem — In geometry, the five circles theorem states that, given five circles centered on a common sixth circle and intersecting each other chainwise on the same circle, the lines joining the their second intersection points forms a pentagram whose… …   Wikipedia

  • Pivot theorem — In geometry, the pivot theorem states that, given any three points P, Q, and R on each respective side of a triangle ABC, the three circles through the points AQR, BPR and CPQ share a common point M. Conversely, this is equivalent to a porism:… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • List of circle topics — This list of circle topics includes things related to the geometric shape, either abstractly, as in idealizations studied by geometers, or concretely in physical space. It does not include metaphors like inner circle or circular reasoning in… …   Wikipedia

  • Феррерс Норман Маклеод — (Ferrers) английский математик. Родился в 1829 г. В 1854 г. получил в Кембридже степень магистра наук, там же занимал должности лектора с 1856 г., тутора с 1861 г., заведующего коллегией Гонвилля и Каюса с 1880 г. Принадлежал к духовному сословию …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Liste de théorèmes — par ordre alphabétique. Pour l établissement de l ordre alphabétique, il a été convenu ce qui suit : Si le nom du théorème comprend des noms de mathématiciens ou de physiciens, on se base sur le premier nom propre cité. Si le nom du théorème …   Wikipédia en Français

  • Théorème du point fixe de Brouwer — En 1886 Henri Poincaré démontre un résultat équivalent au théorème du point fixe de Brouwer. L énoncé exact est prouvé pour la dimension trois par Piers Bohl pour la première fois en 1904, puis par Jacques Hadamard dans le cas général en 1910.… …   Wikipédia en Français

  • Averroes — Ibn Rušd (ابن رشد) Averroes Statue of Averroes in Cordoba Full name ʾAbū l Walīd Muḥammad ibn ʾAḥmad ibn Rušd …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”