Nimber

Nimber

In mathematics, the proper class of nimbers (occasionally called Grundy numbers) is introduced in combinatorial game theory, where they are defined as the values of nim heaps, but arise in a much larger class of games because of the Sprague–Grundy theorem. It is the proper class of ordinals endowed with a new nimber addition and nimber multiplication, which are distinct from ordinal addition and ordinal multiplication.

Properties

The Sprague–Grundy theorem states that every impartial game is equivalent to a nim heap of a certain size. Nimber addition (also known as nim-addition) can be used to calculate the size of a single heap equivalent to a collection of heaps. It is defined recursively by

\alpha + \beta = \operatorname{mex}(\{\,\alpha' + \beta : \alpha' < \alpha\,\} \cup \{\, \alpha + \beta' : \beta' < \beta \,\}),

where for a set S of ordinals, mex(S) is defined to be the "minimum excluded ordinal", i.e. mex(S) is the smallest ordinal which is not an element of S. For finite ordinals, the nim-sum is easily evaluated on computer by taking the exclusive-or of the corresponding numbers (whereby the numbers are given their binary expansions, and the binary expansion of (x xor y) is evaluated bit-wise).

Nimber multiplication (nim-multiplication) is defined recursively by

α β = mex{α ′ β + α β ′ − α ′ β ′ : α ′ < α, β ′ < β} = mex{α ′ β + α β ′ + α ′ β ′ : α ′ < α, β ′ < β}.

Except for the fact that nimbers form a proper class and not a set, the class of nimbers determines an algebraically closed field of characteristic 2. The nimber additive identity is the ordinal 0, and the nimber multiplicative identity is the ordinal 1. In keeping with the characteristic being 2, the nimber additive inverse of the ordinal α is α itself. The nimber multiplicative inverse of the nonzero ordinal α is given by 1/α = mex(S), where S is the smallest set of ordinals (nimbers) such that

  1. 0 is an element of S;
  2. if 0 < α ′ < α and β ′ is an element of S, then [1 + (α ′ − α) β ′ ]/α ′ is also an element of S.

For all natural numbers n, the set of nimbers less than 22n form the Galois field GF(22n) of order 22n.

In particular, this implies that the set of finite nimbers is isomorphic to the direct limit of the fields GF(22n), for each positive n. This subfield is not algebraically closed, however.

Just as in the case of nimber addition, there is a means of computing the nimber product of finite ordinals. This is determined by the rules that

  1. The nimber product of distinct Fermat 2-powers (numbers of the form 22n) is equal to their ordinary product;
  2. The nimber square of a Fermat 2-power x is equal to 3x/2 as evaluated under the ordinary multiplication of natural numbers.

The smallest algebraically closed field of nimbers is the set of nimbers less than the ordinal ωωω, where ω is the smallest infinite ordinal. It follows that as a nimber, ωωω is transcendental over the field.

Addition and multiplication tables

The following tables exhibit addition and multiplication among the first 16 nimbers.
This subset is closed under both operations, since 16 is of the form 22n (When you prefer simple text tables - they are here.)

Nimber addition (sequence A003987 in OEIS)
This is also the Cayley table of Z24 - or the table of bitwise XOR operations.
The small matrices show the single digits of the binary numbers.
Nimber multiplication (sequence A051775 in OEIS)
The nonzero elements form the Cayley table of Z15 (as this different arrangement spells out).
The small matrices differ only by exchanged rows from this one, showing XOR operations.

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • nimber — [ nɛ̃be ] v. tr. <conjug. : 1> • 1876; nimbé 1852; de nimbe 1 ♦ Pourvoir d un nimbe. ⇒ auréoler. 2 ♦ Entourer, auréoler. Apparition nimbée de lumière. Pronom. « de quel rayonnement se nimbait le beau visage de mon amie ! » (A. Gide). ●… …   Encyclopédie Universelle

  • Nimber — Pour le verbe nimber (orner d un nimbe), voir Nimbe. En mathématiques, dans la théorie des jeux combinatoires, les nimbers sont des jeux particuliers, définis comme les tas du jeu de Nim avec un nombre éventuellement infini d allumettes. Plus… …   Wikipédia en Français

  • NIMBER — v. tr. Entourer d’un nimbe. Tête nimbée …   Dictionnaire de l'Academie Francaise, 8eme edition (1935)

  • nimber — (entrée créée par le supplément) (nin bé) v. a. Pourvoir d un nimbe. •   L auréole d or qui le nimbe fait ressortir la tête la plus idéalement candide qu on puisse rêver, E. BERGERAT Journ. offic. 14 mai 1876, p. 3263, 3e col …   Dictionnaire de la Langue Française d'Émile Littré

  • Jeu de Cram — Pour les articles homonymes, voir CRAM. Le jeu de Cram est un jeu mathématique, étudié dans le cadre de la théorie des jeux combinatoires. Le jeu se joue sur un damier que l on remplit progressivement de Dominos. Il a été connu sous plusieurs… …   Wikipédia en Français

  • Sprague–Grundy theorem — In combinatorial game theory, the Sprague–Grundy theorem states that every impartial game under the normal play convention is equivalent to a nimber. The Grundy value or nim value of an impartial game is then defined as the unique nimber that the …   Wikipedia

  • Jeu de Grundy — Le jeu de Grundy est une variante du jeu de Nim. Il s agit d un jeu impartial à deux joueurs, inventé en 1939 par Patrick Grundy pour illustrer sa classification des jeux impartiaux[1], désormais connue sous le nom de théorème de Sprague Grundy.… …   Wikipédia en Français

  • Star (game) — In combinatorial game theory, star, written as * or *1, is the value given to the game where both players have only the option of moving to the zero game. Star may also be denoted as {0|0}. This game is an unconditional first player win.Star, as… …   Wikipedia

  • Kayles — In combinatorial game theory, Kayles is a simple impartial game. In the notation of octal games, Kayles is denoted . 077. Rules Kayles is played with a row of tokens, which represent bowling pins. The row may be of any length. The two players… …   Wikipedia

  • Marie-France Brière — est une artiste multidisciplinaire née à Montréal en 1957 explorant surtout la sculpture sur pierre. Elle a reçu le Prix Louis Comtois en 1996. Biographie Suite à ses études de premier cycle (1980) un séjour de plus d’un an en Italie marquait son …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”