- Berkeley Software Distribution
Infobox OS
name = BSD Unix
caption =
developer = CSRG, UC Berkeley
family =Unix-like
source_model =Open source
latest_release_version = 4.4-Lite2
latest_release_date = 1995
kernel_type = Monolithic
license =BSD licenses
working_state = Superseded by derivatives (see below)
website = N/A|Berkeley Software Distribution (BSD, sometimes called Berkeley Unix) is the
Unix operating system derivative developed and distributed by theComputer Systems Research Group of theUniversity of California, Berkeley , from 1977 to 1995.Historically, BSD has been considered as a branch of UNIX — "BSD UNIX", because it shared the initial codebase and design with the original
AT&T UNIX operating system. In the 1980s, BSD was widely adopted by vendors of workstation-class systems in the form of proprietary UNIX variants such as DECULTRIX andSun Microsystems SunOS . This can be attributed to the ease with which it could be licensed, and the familiarity it found among the founders of many technology companies of this era.Though these commercial BSD derivatives were largely superseded by the UNIX
System V Release 4 andOSF/1 systems in the 1990s (both of which incorporated BSD code), later BSD releases provided a basis for severalopen source development projects which continue to this day.Today, the term of "BSD" is often non-specifically used to refer to any of these BSD descendants, e.g.
FreeBSD ,NetBSD orOpenBSD , which together form a branch of the family ofUnix-like operating systems.History
PDP-11 beginnings
The earliest distributions of Unix from
Bell Labs in the 1970s included thesource code to the operating system, allowing researchers at universities to modify and extend Unix. The first Unix system at Berkeley was aPDP-11 installed in 1974, and thecomputer science department used it for extensive research thereafter.Other universities became interested in the software at Berkeley, and so in 1977
Bill Joy , then a graduate student at Berkeley, assembled and sent out tapes of the first Berkeley Software Distribution (1BSD). 1BSD was an add-on toSixth Edition Unix rather than a complete operating system in its own right; its main components were a Pascalcompiler and Joy's exline editor .The Second Berkeley Software Distribution (2BSD), released in 1978, included updated versions of the 1BSD software as well as two new programs by Joy that persist on Unix systems to this day: the
vi text editor (a visual version of ex) and theC shell .Later releases of 2BSD contained ports of changes to the
VAX -based releases of BSD back to the PDP-11 architecture. 2.9BSD from 1983 included code from 4.1cBSD, and was the first release that was a full OS (a modifiedVersion 7 Unix ) rather than a set of applications and patches. The most recent release, 2.11BSD, was first released in 1992, with maintenance updates from volunteers continuing until 2006 ( [ftp://sg-1.ims.ideas.gd-ais.com/pub/2.11BSD/445 patch 445] was released onDecember 26 2006 ).VAX versions
A
VAX computer was installed at Berkeley in 1978, but the port of Unix to the VAX architecture,UNIX/32V , did not take advantage of the VAX'svirtual memory capabilities. The kernel of 32V was largely rewritten by Berkeley students to include a virtual memory implementation, and a complete operating system including the new kernel, ports of the 2BSD utilities to the VAX, and the utilities from 32V was released as 3BSD at the end of 1979. 3BSD was also alternatively called Virtual VAX/UNIX or VMUNIX (for Virtual Memory Unix), and BSD kernel images were normally called /vmunix until 4.4BSD.The success of 3BSD was a major factor in the
Defense Advanced Research Projects Agency 's (DARPA) decision to fund Berkeley'sComputer Systems Research Group (CSRG), which would develop a standard Unix platform for future DARPA research in theVLSI Project . CSRG released 4BSD, containing numerous improvements to the 3BSD system, in October 1980.4BSD (November 1980) offered a number of enhancements over 3BSD, notably job control in the previously-released csh,
delivermail (the antecedent ofsendmail ), "reliable" signals, and the Curses programming library.4.1BSD (June 1981) was a response to criticisms of BSD's performance relative to the dominant VAX operating system, VMS. The 4.1BSD kernel was systematically tuned up by
Bill Joy until it could perform as well as VMS on several benchmarks. (The release would have been called "5BSD", but the name was changed to avoid confusion withAT&T 'sUNIX System V release. One early, never-released test version was in fact called 4.5BSD.)4.2BSD would take over two years to implement and contained several major overhauls. Before its official release came three intermediate versions: "4.1a" incorporated a modified version of BBN's preliminary
TCP/IP implementation; "4.1b" included the newBerkeley Fast File System , implemented byMarshall Kirk McKusick ; and "4.1c" was an interim release during the last few months of 4.2BSD's development.To guide the design of 4.2BSD
Duane Adams ofDARPA formed a "steering committee" consisting ofBob Fabry ,Bill Joy andSam Leffler fromUCB ,Alan Nemeth andRob Gurwitz fromBBN ,Dennis Ritchie fromBell Labs ,Keith Lantz fromStanford ,Rick Rashid fromCarnegie-Mellon ,Bert Halstead fromMIT , Dan Lynch from ISI, andGerald J. Popek ofUCLA . The committee met from April 1981 to June 1983.The official 4.2BSD release came in August 1983. It was notable as the first version released after the 1982 departure of Bill Joy to co-found
Sun Microsystems ;Mike Karels andMarshall Kirk McKusick took on leadership roles within the project from that point forward. On a lighter note, it also marked the debut of BSD's daemon mascot in a drawing byJohn Lasseter that appeared on the cover of the printed manuals distributed byUSENIX .4.3BSD
4.3BSD was released in June 1986. Its main changes were to improve the performance of many of the new contributions of 4.2BSD that had not been as heavily tuned as the 4.1BSD code. Prior to the release, BSD's implementation of TCP/IP had diverged considerably from BBN's official implementation. After several months of testing, DARPA determined that the 4.2BSD version was superior and would remain in 4.3BSD. (See also
History of the Internet .)After 4.3BSD, it was determined that BSD would move away from the aging VAX platform. The Power 6/32 platform (codenamed "Tahoe") developed by
Computer Consoles Inc. seemed promising at the time, but was abandoned by its developers shortly thereafter. Nonetheless, the 4.3BSD-Tahoe port (June 1988) proved valuable as it led to a separation of machine-dependent and machine-independent code in BSD which would improve the system's future portability.Until this point, all versions of BSD had incorporated proprietary AT&T Unix code and therefore required licenses from AT&T for their use. Source code licenses had become very expensive by this point, and several outside parties had expressed interest in a separate release of the networking code, which had been developed entirely outside AT&T and would not be subject to the licensing requirement. This led to Networking Release 1 (Net/1), which was made available to non-licensees of AT&T code and was freely redistributable under the terms of the
BSD license . It was released in June 1989.4.3BSD-Reno came in early 1990. It was an interim release during the early development of 4.4BSD, and its use was considered a "gamble", hence the naming after the
gambling center ofReno, Nevada . This release was clearly moving towardsPOSIX compliance, and, according to some, away from the BSD philosophy (as POSIX is very much based on System V, and Reno was quite bloated compared to previous releases).In August 2006, "Information Week" magazine rated 4.3BSD as the "Greatest Software Ever Written". [http://www.informationweek.com/shared/printableArticle.jhtml?articleID=191901844] They commented: "BSD 4.3 represents the single biggest theoretical undergirder of the Internet."
Net/2 and legal troubles
After Net/1, BSD developer
Keith Bostic proposed that more non-AT&T sections of the BSD system be released under the same license as Net/1. To this end, he started a project to reimplement most of the standard Unix utilities without using the AT&T code. For example,vi , which had been based on the original Unix version of ed, was rewritten asnvi (new vi). Within eighteen months, all the AT&T utilities had been replaced, and it was determined that only a few AT&T files remained in the kernel. These files were removed, and the result was the June 1991 release of Networking Release 2 (Net/2), a nearly complete operating system that was freely distributable.Net/2 was the basis for two separate ports of BSD to the
Intel 80386 architecture: the free386BSD byWilliam Jolitz and the proprietary BSD/386 (later renamed BSD/OS) byBerkeley Software Design (BSDi). 386BSD itself was short-lived, but became the initial code base of theNetBSD andFreeBSD projects that were started shortly thereafter.BSDi soon found itself in legal trouble with AT&T's
Unix System Laboratories subsidiary, then the owners of the System Vcopyright and the Unixtrademark . The "USL v. BSDi " lawsuit was filed in 1992 and led to aninjunction on the distribution of Net/2 until the validity of USL's copyright claims on the source could be determined.The lawsuit slowed development of the free-software descendants of BSD for nearly two years while their legal status was in question, and as a result systems based on the
Linux kernel , which did not have such legal ambiguity, gained greater support. Although not released until 1992, development of386BSD predated that of Linux, andLinus Torvalds has said that if 386BSD had been available at the time, he would probably not have created Linux. [http://gondwanaland.com/meta/history/interview.html]4.4BSD and descendants
The lawsuit was settled in January 1994, largely in Berkeley's favor. Of the 18,000 files in the Berkeley distribution, only 3 had to be removed and 70 modified to show USL copyright notices. A further condition of the settlement was that USL would not file further lawsuits against users and distributors of the Berkeley-owned code in the upcoming 4.4BSD release.
In June 1994, 4.4BSD was released in two forms: the freely distributable 4.4BSD-Lite contained no AT&T source, whereas 4.4BSD-Encumbered was available, as earlier releases had been, only to AT&T licensees.
The final release from Berkeley was 1995's 4.4BSD-Lite Release 2, after which the CSRG was dissolved and development of BSD at Berkeley ceased. Since then, several variants based directly or indirectly on 4.4BSD-Lite (such as
FreeBSD ,NetBSD ,OpenBSD andDragonFly BSD ) have been maintained.In addition, the permissive nature of the BSD license has allowed many other operating systems, both free and proprietary, to incorporate BSD code. For example,
Microsoft Windows has used BSD-derived code in its implementation of TCP/IP and bundles recompiled versions of BSD'scommand line networking tools with its current releases. [http://www.everything2.com/index.pl?node=BSD%20Code%20in%20Windows] Also Darwin, the system on which Apple'sMac OS X is built, is partly derived from 4.4BSD-Lite2 and FreeBSD. Various commercial UNIXes, such as Solaris, also contain varying amounts of BSD code.Technology
BSD pioneered many of the advances of modern computing. Berkeley's Unix was the first Unix to include libraries supporting the
Internet Protocol stacks: "Berkeley sockets ". By integrating sockets with the Unix operating system'sfile descriptor s, it became almost as easy to read and write data across a network as it was to access a disk. The AT&T laboratory eventually released their ownSTREAMS library, which incorporated much of the same functionality in a software stack with a better architecture, but the wide distribution of the existing sockets library, together with the unfortunate omission of a function call for polling a set of open sockets equivalent to the select call in the Berkeley library, reduced the impact of the new API. Early versions of BSD were used to formSun Microsystems 'SunOS , founding the first wave of popular Unix workstations.Today, BSD continues to be used as a testbed for technology by academic organizations, as well as finding uses in a lot of commercial and free products and, increasingly, in embedded devices. The general quality of its source code, as well as its documentation (especially reference manual pages, commonly referred to as "man pages"), make it well-suited for many purposes.
The permissive nature of the
BSD license allows companies to distribute derived products asproprietary software without exposing source code and sometimesintellectual property to competitors. Searching for strings containing "University of California, Berkeley" in the documentation of products, in the static data sections of binaries and ROMs, or as part of other information about a software program, will often show BSD code has been used. This permissiveness also makes BSD code suitable for use inopen source products, and the license is compatible with many otheropen source license s.BSD operating systems can run much native software of several other operating systems on the same architecture, using a binary
compatibility layer . Much simpler and faster thanemulation , this allows, for instance, applications intended forLinux to be run at effectively full speed. This makes BSDs not only suitable for server environments, but also for workstation ones, given the increasing availability of commercial or closed-source software for Linux only. This also allows administrators to migrate legacy commercial applications, which may have only supported commercial Unix variants, to a more modern operating system, retaining the functionality of such applications until they can be replaced by a better alternative.Current BSD operating system variants support many of the common IEEE, ANSI, ISO, and
POSIX standards, while retaining most of the traditional BSD behavior. LikeAT&T Unix , the BSD kernel is monolithic, meaning that device drivers in the kernel run inprivileged mode , as part of the core of the operating system.ignificant BSD descendants
:"See also: and
Comparison of BSD operating systems "BSD has been the base of a large number of operating systems. Most notable among these today is perhaps the majoropen source BSDs,FreeBSD ,NetBSD andOpenBSD —sometimes known as "the BSDs"—which have themselves spawned a number of children, includingDragonFly BSD ,FreeSBIE ,MirOS BSD ,DesktopBSD , andPC-BSD . They are targeted at an array of systems for different purposes and are common in government facilities, universities and in commercial use. A number of commercial operating systems are also partly or wholly based on BSD or its descendants, including Sun'sSunOS andApple Inc. 'sMac OS X . A selection of significant Unix versions andUnix-like operating systems that descend from BSD includes:*
FreeBSD , a major open source effort focusing on performance and thex86 platform.
*NetBSD , an open source BSD with an emphasis on portability and clean design.
*OpenBSD , a 1995 fork of NetBSD, focuses on portability, standardization, correctness, proactive security and integrated cryptography.
*DragonFly BSD , a fork of FreeBSD to follow an alternative design, particularly related to SMP.
*PC-BSD andDesktopBSD , distributions of FreeBSD with emphasis on ease of use and user friendly interfaces for the desktop/laptop PC user.
*Tru64 UNIX (formerly DEC OSF/1 AXP or Digital UNIX), the port ofOSF/1 forDEC Alpha -based systems from DEC,Compaq and HP.
*Juniper Networks JunOS, the operating system for Juniper routers, a customized version of FreeBSD, and a variety of other embedded operating systems
*Apple Inc. 's Darwin, the core ofMac OS X ; built on the XNU kernel (part Mach, part FreeBSD, part Apple-derived code) and a userland much of which comes fromFreeBSD
* Early versions ofSun Microsystems SunOS (up to SunOS 4.1.4), an enhanced version of 4BSD for the SunMotorola 68k -basedSun-2 andSun-3 systems,SPARC -based systems, andx86 -basedSun386i systems.
* DEC'sUltrix , the official version of Unix for itsPDP-11 ,VAX , andDECstation systems
*OSF/1 , amicrokernel -based UNIX developed by theOpen Software Foundation , incorporating theMach kernel and parts of 4BSD
*DEMOS , a Soviet BSD clone
*NeXT NEXTSTEP and OPENSTEP, based on the Mach kernel and 4BSD; the ancestor ofMac OS X
*386BSD , the first open source BSD-based operating system and the ancestor of most current BSD systems
*BSD/OS , a (now defunct) proprietary BSD for PCsee also
*
Comparison of BSD operating systems
*List of BSD operating systems
*BSD licenses
*BSD Daemon
*Bill Joy
*Marshall Kirk McKusick
*Keith Bostic
*Özalp Babaoğlu References
Bibliography
* Marshall K. McKusick, Keith Bostic, Michael J. Karels, John S. Quartermain, "The Design and Implementation of the 4.4BSD Operating System" (Addison Wesley, 1996; ISBN 978-0-201-54979-9)
* Marshall K. McKusick, George V. Neville-Neil, "The Design and Implementation of the FreeBSD Operating System" (Addison Wesley, August 2, 2004; ISBN 978-0-201-70245-3)
* Samuel J. Leffler, Marshall K. McKusick, Michael J. Karels, John S. Quarterman, "The Design and Implementation of the 4.3BSD UNIX Operating System" (Addison Wesley, November, 1989; ISBN 978-0-201-06196-3)
* Chris DiBona, Mark Stone, Sam Ockman, Open Source (Organization), Brian Behlendorf and J. Scott Bradner, "Open Sources: Voices from the Open Source Revolution". [http://www.oreilly.com/ O'Reilly & Associates] , 1999. Trade paperback, 272 pages. ISBN 978-1-565-92582-3. Online [http://www.oreilly.com/catalog/opensources/book/toc.html version] ;Marshall Kirk McKusick , chapter on BSD, [http://www.oreilly.com/catalog/opensources/book/kirkmck.html "Twenty Years of Berkeley Unix - From AT&T-Owned to Freely Redistributable"]
*Peter H. Salus , "The Daemon, the GNU & The Penguin" (Forthcoming - currently being serialised on theGroklaw website)
*Peter H. Salus , "A Quarter Century of UNIX" (Addison Wesley, June 1, 1994; ISBN 978-0-201-54777-1)
*Peter H. Salus , "Casting the Net" (Addison-Wesley, March 1995; ISBN 978-0-201-87674-1)External links
* [http://www.freebsd.org FreeBSD] , [http://www.netbsd.org NetBSD] , [http://www.openbsd.org OpenBSD] , [http://www.dragonflybsd.org/ DragonFlyBSD] , [http://desktopbsd.net/ DesktopBSD] and [http://www.pcbsd.org PC-BSD] – Popular BSD descendants
* [http://www.freebsd.org/cgi/cvsweb.cgi/~checkout~/src/share/misc/bsd-family-tree?rev=HEAD A timeline of BSD and Research UNIX]
* [http://www.levenez.com/unix/ UNIX History] – History of UNIX and BSD using diagrams
* [http://www.google.com/bsd Google's specialized BSD search]
* [http://www.bsdcertification.org/index.htm The BSD Certification Group]
* [http://distrowatch.com/ DistroWatch A site containing usage statistics and links for many Linux and BSD variants]
* [http://www.bsdworld.net BSD News, Search Engine, Forums and Tutorials]
Wikimedia Foundation. 2010.