Dyadics

Dyadics

Dyadics are mathematical objects, representing linear functions of vectors. Dyadic notation was first established by Gibbs in 1884.

Contents

Definition

Dyad A is formed by two vectors a and b (complex in general). Here, upper-case bold variables denote dyads (as well as general dyadics) whereas lower-case bold variables denote vectors.

 \mathbf{A}= \mathbf{a}\mathbf{b}

In matrix notation :

 \mathbf{A} = \mathbf{a}\mathbf{b}^\mathrm{T} = \left(
\begin{array}{c}
 a_1 \\
 a_2
\end{array}
\right)\left(
\begin{array}{cc}
 b_1 & b_2
\end{array}
\right) = \left(
\begin{array}{cc}
 a_1b_1 & a_1b_2 \\
 a_2b_1 & a_2b_2
\end{array}
\right).

In general algebraic form:

 \mathbf{A} = \sum _{i,j} a_{i}b_{j}\hat{\mathbf{a}}_i\hat{\mathbf{b}}_j

where  \hat{\mathbf{a}}_i and  \hat{\mathbf{b}}_j are unit vectors (also known as coordinate axes) and i,j goes from 1 to the space dimension.

A dyadic polynomial A, otherwise known as a dyadic, is formed from multiple vectors \mathbf{a}_i, \mathbf{b}_i

 \mathbf{A} = \sum_i\mathbf{a}_i\mathbf{b}_i = \mathbf{a}_1\mathbf{b}_1+\mathbf{a}_2\mathbf{b}_2+\mathbf{a}_3\mathbf{b}_3+\cdots

A dyadic which cannot be reduced to a sum of less than 3 dyads is said to be complete. In this case, the forming vectors are non-coplanar, see Chen (1983).

The following table classifies dyadics:

Determinant Adjoint Matrix and its rank
Zero = 0 = 0 = 0; rank 0: all zeroes
Linear = 0 = 0 ≠ 0; rank 1: at least one non-zero element and all 2x2 subdeterminants zero (single dyadic)
Planar = 0 ≠ 0 (single dyadic) ≠ 0; rank 2: at least one non-zero 2x2 subdeterminant
Complete ≠ 0 ≠ 0 ≠ 0; rank 3: non-zero determinant

Dyadics algebra

Dyadic with vector

There are 4 operations for a vector with a dyadic

 \begin{align}
\mathbf{c}\cdot \mathbf{a} \mathbf{b}&=\left(\mathbf{c}\cdot\mathbf{a}\right)\mathbf{b}\\
\left(\mathbf{a}\mathbf{b}\right)\cdot \mathbf{c} &= \mathbf{a}\left(\mathbf{b}\cdot\mathbf{c}\right) \\
\mathbf{c} \times \left(\mathbf{ab}\right) &= \left(\mathbf{c}\times\mathbf{a}\right)\mathbf{b} \\
\left(\mathbf{ab}\right)\times\mathbf{c}&=\mathbf{a}\left(\mathbf{b}\times\mathbf{c}\right)
\end{align}

Dyadic with dyadic

There are 5 operations for a dyadic to another dyadic:

Simple-dot product

 \left(\mathbf{ab}\right)\cdot\left(\mathbf{cd}\right) = \mathbf{a}\left(\mathbf{b}\cdot\mathbf{c}\right)\mathbf{d}=\left(\mathbf{b}\cdot\mathbf{c}\right)\mathbf{ad}

For 2 general dyadics A and B:

 \mathbf{A}=\sum _i \mathbf{a}_i\mathbf{b}_i
 \mathbf{B}=\sum _i \mathbf{c}_i\mathbf{d}_i
 \mathbf{A}\cdot\mathbf{B}=\sum _{i,j}\left(\mathbf{a}_i\mathbf{b}_i\right)\cdot\left(\mathbf{c}_j\mathbf{d}_j\right) = \sum _{i,j}\left(\mathbf{b}_i\cdot\mathbf{c}_j\right)\mathbf{a}_i\mathbf{d}_j = \left(\mathbf{b}_1\cdot\mathbf{c}_1\right)\mathbf{a}_1\mathbf{d}_1+\left(\mathbf{b}_1\cdot\mathbf{c}_2\right)\mathbf{a}_1\mathbf{d}_2+\text{...}+\left(\mathbf{b}_2\cdot\mathbf{c}_1\right)\mathbf{a}_2\mathbf{d}_1+\left(\mathbf{b}_2\cdot\mathbf{c}_2\right)\mathbf{a}_2\mathbf{d}_2+\text{...}

Double-dot product

There are two ways to define the double dot product. Many sources use a definition of the double dot product rooted in the matrix double-dot product,

\mathbf{ab}\colon\mathbf{cd}=\left(\mathbf{a}\cdot\mathbf{d}\right)\left(\mathbf{b}\cdot\mathbf{c}\right)

whereas other sources use a definition unique (usually referred to as the "colon product") to dyads:

 \left(\mathbf{ab}\right):\left(\mathbf{cd}\right) = \mathbf{c}\cdot\left(\mathbf{ab}\right)\cdot\mathbf{d} =  \left(\mathbf{a}\cdot\mathbf{c}\right)\left(\mathbf{b}\cdot\mathbf{d}\right)

One must be careful when deciding which convention to use. As there are no analogous matrix operations for the remaining dyadic products, no ambiguities in their definitions appear.

The double-dot product is commutative.

 \mathbf{A} \colon \! \mathbf{B} = \mathbf{B} \colon \! \mathbf{A}

There is a special double dot product with a transpose

 \mathbf{A} \colon \! \mathbf{B}^\mathrm{T} = \mathbf{A}^\mathrm{T} \colon \! \mathbf{B}

Another identity is:

\mathbf{A}\colon\mathbf{B}=\left(\mathbf{A}\cdot\mathbf{B}^\mathrm{T}\right)\colon \mathbf{I}
=\left(\mathbf{B}\cdot\mathbf{A}^\mathrm{T}\right)\colon \mathbf{I}

Dot–cross product

 \left(\mathbf{ab}\right)
\!\!\!\begin{array}{c}
 _\cdot \\
 ^\times 
\end{array}\!\!\!
\left(\mathbf{c}\mathbf{d}\right)=\left(\mathbf{a}\cdot\mathbf{c}\right)\left(\mathbf{b}\times\mathbf{d}\right)

Cross–dot product

 \left(\mathbf{ab}\right)
\!\!\!\begin{array}{c}
 _\times  \\
 ^\cdot
\end{array}\!\!\!
\left(\mathbf{cd}\right)=\left(\mathbf{a}\times\mathbf{c}\right)\left(\mathbf{b}\cdot\mathbf{d}\right)

Double-cross product

 \left(\mathbf{ab}\right)
\!\!\!\begin{array}{c}
 _\times  \\
 ^\times 
\end{array}\!\!\!
\left(\mathbf{cd}\right)=\left(\mathbf{a}\times\mathbf{c}\right)\left(\mathbf{b}\times \mathbf{d}\right)

We can see that, for any dyad formed from two vectors a and b, its double cross product is zero.

 \left(\mathbf{ab}\right)
\!\!\!\begin{array}{c}
 _\times  \\
 ^\times 
\end{array}\!\!\!
\left(\mathbf{ab}\right)=\left(\mathbf{a}\times\mathbf{a}\right)\left(\mathbf{b}\times\mathbf{b}\right)= 0

However, for 2 general dyadics, their double-cross product is defined as:

 \mathbf{A}
\!\!\!\begin{array}{c}
 _\times  \\
 ^\times 
\end{array}\!\!\!
\mathbf{B}=\sum _{i,j} \left(\mathbf{a}_i\times \mathbf{c}_j\right)\left(\mathbf{b}_i\times \mathbf{d}_j\right)

For a dyadic double-cross product on itself, the result will generally be non-zero. For example, a dyadic A composed of six different vectors

\mathbf{A}=\sum _{i=1}^3 \mathbf{a}_i\mathbf{b}_i

has a non-zero self-double-cross product of

 \mathbf{A}
\!\!\!\begin{array}{c}
 _\times  \\
 ^\times 
\end{array}\!\!\!
\mathbf{A} = 2 \left[\left(\mathbf{a}_1\times \mathbf{a}_2\right)\left(\mathbf{b}_1\times \mathbf{b}_2\right)+\left(\mathbf{a}_2\times \mathbf{a}_3\right)\left(\mathbf{b}_2\times \mathbf{b}_3\right)+\left(\mathbf{a}_3\times \mathbf{a}_1\right)\left(\mathbf{b}_3\times \mathbf{b}_1\right)\right]

Unit dyadic

For any vector a, there exist a unit dyadic I, such that

 \mathbf{I}\cdot\mathbf{a}=\mathbf{a}\cdot\mathbf{I}= \mathbf{a}

For any base of 3 vectors a, b and c, with reciprocal base \hat{{\mathbf{a}}}, \hat{\mathbf{b}} and \hat{\mathbf{c}}, the unit dyadic is defined by


\mathbf{I} = \mathbf{a}\hat{\mathbf{a}} + \mathbf{b}\hat{\mathbf{b}} + \mathbf{c}\hat{\mathbf{c}}

In Cartesian coordinates,


\mathbf{I} = \hat{\mathbf{x}}\hat{\mathbf{x}} + \hat{{\mathbf{y}}}\hat{\mathbf{y}} + \hat{{\mathbf{z}}}\hat{\mathbf{z}}

For an orthonormal base \mathbf{x_i}=\mathbf{x_i'},

\mathbf{I}=\sum _i \mathbf{x_i}\mathbf{x_i}

The corresponding matrix is

\mathbf{I}=\left(
\begin{array}{ccc}
 1 & 0 & 0\\
 0 & 1 & 0\\
 0 & 0 & 1\\
\end{array}
\right)

Rotation dyadic

For any vector a,

 \mathbf{a}\times \mathbf{I}

is a 90 degree right hand rotation dyadic around a.

Some operations with unit dyadics

 \left(\mathbf{a}\times\mathbf{I}\right)\cdot\left(\mathbf{b}\times\mathbf{I}\right)= \mathbf{ab}-\left(\mathbf{a}\cdot\mathbf{b}\right)\mathbf{I}
\mathbf{I}
\!\!\begin{array}{c}
 _\times  \\
 ^\cdot
\end{array}\!\!\!
\left(\mathbf{ab}\right)=\mathbf{b}\times\mathbf{a}
 \mathbf{I}
\!\!\begin{array}{c}
 _\times  \\
 ^\times 
\end{array}\!\!
\mathbf{A}=\left(\mathbf{A}
\!\!\begin{array}{c}
 _\times  \\
 ^\times 
\end{array}\!\!
\mathbf{I}\right)\mathbf{I}-\mathbf{A}^\mathrm{T}
\mathbf{I}\;\colon\left(\mathbf{ab}\right) = \left(\mathbf{I}\cdot\mathbf{a}\right)\cdot\mathbf{b} = \mathbf{a}\cdot\mathbf{b} = \text{Trace}\left(\mathbf{ab}\right)

See also

References

  • ISMO V. Lindell (1992). Methods for Electromagnetic Field Analysis. ISBN 019856239. .
  • Hollis C. Chen (1983). Theory of Electromagnetic Wave - A Coordinate-free approach. ISBN 0070106886. .

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Dyadic tensor — In multilinear algebra, a dyadic is a second rank tensor written in a special notation, formed by juxtaposing pairs of vectors, along with a notation for manipulating such expressions analogous to the rules for matrix algebra. Each component of a …   Wikipedia

  • Dyadic — may refer to: Adicity of a mathematical relation or function (dyadic relations are usually called binary relations) Dyadic communication Dyadic counterpoint, the voice against voice conception of polyphony Dyadic fraction, a mathematical group… …   Wikipedia

  • Dyadic product — In mathematics, in particular multilinear algebra, the dyadic product of two vectors, and , each having the same dimension, is the tensor product of the vectors and results in a tensor of order two and rank one. It is also called outer product.… …   Wikipedia

  • List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

  • IEEE Heinrich Hertz Medal — The IEEE Heinrich Hertz Medal is a science award presented by the Institute of Electrical and Electronics Engineers for outstanding achievements in the field of electromagnetic waves. The medal is named in honour of German physicist Heinrich… …   Wikipedia

  • History of quaternions — This article is an indepth story of the history of quaternions. It tells the story of who and when. To find out what quaternions are see quaternions and to learn about historical quaternion notation of the 19th century see classical quaternions… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”