Hermite interpolation

Hermite interpolation

Hermite interpolation is a method closely related to the Newton divided difference method of interpolation in numerical analysis, that allows us to consider given derivatives at data points, as well as the data points themselves. The interpolation will give a polynomial that has a degree less than or equal to the number of both data points and their derivatives, minus 1.

Usage

The derivatives are treated as extra points, and in the divided difference table, the points are repeated. To avoid division by zero, the values where the division by zero would take place are replaced with the derivatives, multiplied by a constant, depending on the position in the table. For example, using the notation on the Newton polynomial article, if point x_i is repeated n times, [x_i, x_i, ..., x_i] =f^{(n-1)}(x_i)/(n-1)!, e.g.

: [x_i, x_i, x_i, x_i] =f^{(3)}(x_i)/3!

: [x_i, x_i, x_i] =f^{(2)}(x_i)/2!

etc.

The table is calculated in the exact same fashion as before.

Example

The example used here will be the polynomial x^8 + 1. The values, first, and second derivatives at the points x = -1, x = 0, and x = 1 will be used. This means that 9 pieces of data will be used, and so the polynomial discovered will be of degree 8.

:

:egin{align}P(x) &= 2 - 8(x+1) + 28(x+1) ^2 - 21 (x+1)^3 + 15x(x+1)^3 - 10x^2(x+1)^3 \&quad + 4x^3(x+1)^3 -1x^3(x+1)^3(x-1)+x^3(x+1)^3(x-1)^2 \&=2 - 8 + 28 - 21 - 8x + 56x - 63x + 15x + 28x^2 - 63x^2 + 45x^2 - 10x^2 - 21x^3 \&quad + 45x^3 - 30x^3 + 4x^3 + x^3 + x^3 + 15x^4 - 30x^4 + 12x^4 + 2x^4 + x^4 \&quad - 10x^5 + 12x^5 - 2x^5 + 4x^5 - 2x^5 - 2x^5 - x^6 + x^6 - x^7 + x^7 + x^8 \&= x^8 + 1.end{align}

Error

The error of the function when used to approximate the value at a point is always going to be for some point c between the furthest x-value used and the x-value approximated: frac{f^{(a)}(c)}{a!}prod_{i=0}^n (x-x_i)^{N_i} where a is the number of pieces of data, n is the number of x-values minus 1, and N_i is the number of pieces of data used at x_i. This is because the function cannot change more quickly from the estimated Hermite interpolation polynomial than its a-th derivative divided by a! multiplied by the distance of the point of evaluation from the known points.

ee also

*Cubic Hermite spline
*Newton series
*Neville's schema
*Polynomial interpolation
*Lagrange form of the interpolation polynomial
*Bernstein form of the interpolation polynomial

External links

* [http://mathworld.wolfram.com/HermitesInterpolatingPolynomial.html Hermites Interpolating Polynomial] at Mathworld


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Hermite-Interpolation — Interpolation stammt vom lateinischen Wort interpolare (auffrischen, umgestalten, verfälschen) ab. Heutzutage wird es im Sinne von einfügen benutzt. Die konkrete Bedeutung bezeichnet: in der Mathematik verschiedene Probleme und Verfahren, siehe… …   Deutsch Wikipedia

  • Hermite — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom.  Pour l’article homophone, voir ermite (homonymie). Sommaire 1 …   Wikipédia en Français

  • Interpolation — In the mathematical subfield of numerical analysis, interpolation is a method of constructing new data points within the range of a discrete set of known data points. In engineering and science one often has a number of data points, as obtained… …   Wikipedia

  • Hermite spline — In the mathematical subfield of numerical analysis, a Hermite spline is a spline curve where each polynomial of the spline is in Hermite form.ee also*Cubic Hermite spline *Hermite polynomials *Hermite interpolation …   Wikipedia

  • Interpolation de Hermite — Interpolation polynomiale En mathématiques, en analyse numérique, l interpolation polynomiale est une technique d interpolation d un ensemble de données ou d une fonction par un polynôme. En d autres termes, étant donné un ensemble de points… …   Wikipédia en Français

  • HERMITE (C.) — Les travaux du mathématicien français Charles Hermite portent surtout sur l’algèbre, la théorie des nombres et l’analyse. On lui doit de très nombreux résultats sur la théorie des invariants et sur les fonctions elliptiques et abéliennes, et il… …   Encyclopédie Universelle

  • Interpolation Polynomiale — En mathématiques, en analyse numérique, l interpolation polynomiale est une technique d interpolation d un ensemble de données ou d une fonction par un polynôme. En d autres termes, étant donné un ensemble de points (obtenu, par exemple, à la… …   Wikipédia en Français

  • Interpolation Newtonienne — En analyse numérique, l interpolation newtonienne, du nom d Isaac Newton, est une méthode d interpolation polynomiale permettant d obtenir le polynôme de Lagrange comme combinaison linéaire de polynômes de la base newtonienne. Contrairement à l… …   Wikipédia en Français

  • Charles Hermite — Hermite redirects here. For other uses, see Hermite (disambiguation). Charles Hermite Charles Hermite circa 1901 …   Wikipedia

  • Hermite polynomials — In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence that arise in probability, such as the Edgeworth series; in combinatorics, as an example of an Appell sequence, obeying the umbral calculus; in numerical… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”