Strongly compact cardinal
- Strongly compact cardinal
In mathematical set theory, a strongly compact cardinal is a certain kind of large cardinal number; their existence can neither be proven nor disproven from the standard axioms of set theory.
A cardinal κ is strongly compact if and only if every κ-complete filter can be extended to a κ complete ultrafilter.
Strongly compact cardinals were originally defined in terms of infinitary logic, where logical operators are allowed to take infinitely many operands. The logic on a regular cardinal κ is defined by requiring the number of operands for each operator to be less than κ; then κ is strongly compact if its logic satisfies an analog of the compactness property of finitary logic.Specifically, a statement which follows from some other collection of statements should also follow from some subcollection having cardinality less than κ.
The property of strong compactness may be weakened by only requiring this compactness property to hold when the original collection of statements has cardinality below a certain cardinal λ; we may then refer to λ-compactness. A cardinal is weakly compact if and only if it is κ-compact; this was the original definition of that concept.
Strong compactness implies measurability, and is implied by supercompactness. Given that the relevant cardinals exist, it is consistent with ZFC either that the first measurable cardinal is strongly compact, or that the first strongly compact cardinal is supercompact; these cannot both be true, however. A measurable limit of strongly compact cardinals is strongly compact, but the least such limit is not supercompact.
The consistency strength of strong compactness is strictly above that of a Woodin cardinal. Some set theorists conjecture that existence of a strongly compact cardinal is equiconsistent with that of a supercompact cardinal. However, a proof is unlikely until a canonical inner model theory for supercompact cardinals is developed.
Extendibility is a second-order analog of strong compactness.
References
*
Wikimedia Foundation.
2010.
Look at other dictionaries:
Compact cardinal — may refer to: Weakly compact cardinal Subcompact cardinal Supercompact cardinal Strongly compact cardinal This disambiguation page lists mathematics articles associated with the same title. If an … Wikipedia
Weakly compact cardinal — In mathematics, a weakly compact cardinal is a certain kind of cardinal number introduced by harvtxt|Erdös|Tarski|1961; weakly compact cardinals are large cardinals, meaning that their existence can neither be proven nor disproven from the… … Wikipedia
Subcompact cardinal — In mathematics, a subcompact cardinal is a certain kind of large cardinal number.A cardinal number κ is subcompact if and only if for every A⊂H(κ+) there is a non trivial elementary embedding j:(H(μ+), B) → (H(κ+), A) with critical point μ and… … Wikipedia
List of large cardinal properties — This page is a list of some types of cardinals; it is arranged roughly in order of the consistency strength of the axiom asserting the existence of cardinals with the given property. Existence of a cardinal number κ of a given type implies the… … Wikipedia
List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… … Wikipedia
De Bruijn–Erdős theorem (graph theory) — This article is about coloring infinite graphs. For the number of lines determined by a finite set of points, see De Bruijn–Erdős theorem (incidence geometry). In graph theory, the De Bruijn–Erdős theorem, proved by Nicolaas Govert de Bruijn and… … Wikipedia
List of unsolved problems in mathematics — This article lists some unsolved problems in mathematics. See individual articles for details and sources. Contents 1 Millennium Prize Problems 2 Other still unsolved problems 2.1 Additive number theory … Wikipedia
Menachem Magidor — Professor Menachem Magidor in Jerusalem, December 2006 Born January 24, 1946 … Wikipedia
Singular cardinals hypothesis — In set theory, the singular cardinals hypothesis (SCH) arose from the question of whether the least cardinal number for which the generalized continuum hypothesis (GCH) might fail could be a singular cardinal.According to Mitchell (1992), the… … Wikipedia
Robert M. Solovay — Robert Martin Solovay (1938 ndash; ) is a set theorist who spent many years as a professor at UC Berkeley. Among his most noted accomplishments are showing (relative to the existence of an inaccessible cardinal) that the statement every set of… … Wikipedia