Strongly compact cardinal — In mathematical set theory, a strongly compact cardinal is a certain kind of large cardinal number; their existence can neither be proven nor disproven from the standard axioms of set theory.A cardinal kappa; is strongly compact if and only if… … Wikipedia
Weakly compact cardinal — In mathematics, a weakly compact cardinal is a certain kind of cardinal number introduced by harvtxt|Erdös|Tarski|1961; weakly compact cardinals are large cardinals, meaning that their existence can neither be proven nor disproven from the… … Wikipedia
Cardinal Vicar — ( it. Cardinale Vicario) is a title commonly given to the vicar general of the diocese of Rome for the portion of the diocese within Italy. The official title, as given in the Annuario Pontificio (under the heading Vicariate of Rome ), is Vicar… … Wikipedia
Cardinal Vicar — • The vicar general of the pope, as Bishop of Rome, for the spiritual administration of the city, and its surrounding district, properly known as Vicarius Urbis Catholic Encyclopedia. Kevin Knight. 2006. Cardinal Vicar Cardinal V … Catholic encyclopedia
Compact Weaver — Conservation status Least Concern (IUCN 3.1) Scientific classification Kingdom … Wikipedia
Subcompact cardinal — In mathematics, a subcompact cardinal is a certain kind of large cardinal number.A cardinal number κ is subcompact if and only if for every A⊂H(κ+) there is a non trivial elementary embedding j:(H(μ+), B) → (H(κ+), A) with critical point μ and… … Wikipedia
Reflecting cardinal — In set theory, a mathematical discipline, a reflecting cardinal is a cardinal number kappa; for which there is a normal ideal I on kappa; such that for every X isin; I +, the set of α isin; kappa; for which X reflects at α is in I +. (A… … Wikipedia
Weakly compact — In mathematics, weakly compact can refer to*weakly compact cardinal *compact in the weak topology … Wikipedia
List of large cardinal properties — This page is a list of some types of cardinals; it is arranged roughly in order of the consistency strength of the axiom asserting the existence of cardinals with the given property. Existence of a cardinal number κ of a given type implies the… … Wikipedia
De Bruijn–Erdős theorem (graph theory) — This article is about coloring infinite graphs. For the number of lines determined by a finite set of points, see De Bruijn–Erdős theorem (incidence geometry). In graph theory, the De Bruijn–Erdős theorem, proved by Nicolaas Govert de Bruijn and… … Wikipedia