Eisenstein's theorem

Eisenstein's theorem

In mathematics, Eisenstein's theorem, named after the German mathematician Ferdinand Eisenstein, applies to the coefficients of any power series which is an algebraic function with rational number coefficients. Through the theorem, it is readily demonstrable that a function such as the exponential function must be a transcendental function.

Suppose therefore that

:sum_{}^{} a_n t^n

is a formal power series with rational coefficients "a""n", which has a non-zero radius of convergence in the complex plane, and within it represents an analytic function that is in fact an algebraic function. Let "d""n" denote the denominator of "a""n", as a fraction in lowest terms. Then Eisenstein's theorem states that there is a finite set "S" of prime numbers "p", such that every prime factor of a number "d""n" is contained in "S".

This has an interpretation in terms of p-adic numbers: with an appropriate extension of the idea, the "p"-adic radius of convergence of the series is at least 1, for almost all "p" (i.e. the primes outside the finite set "S"). In fact that statement is a little weaker, in that it disregards any initial partial sum of the series, in a way that may "vary" according to "p". For the other primes the radius is non-zero.


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Eisenstein (surname) — Eisenstein is a surname, and may refer to:Usually: * Ferdinand Eisenstein, a mathematician who formulated: ** Eisenstein s criterion ** Eisenstein integer ** Eisenstein s theorem ** Eisenstein prime ** Eisenstein ideal ** Eisenstein series *… …   Wikipedia

  • Eisenstein's criterion — In mathematics, Eisenstein s criterion gives sufficient conditions for a polynomial to be irreducible over the rational numbers (or equivalently, over the integers; see Gauss s lemma). Suppose we have the following polynomial with integer… …   Wikipedia

  • Gotthold Eisenstein — Pour les articles homonymes, voir Eisenstein (homonymie). Ferdinand Gotthold Max Eisenstein (16 avril 1823 11 octobre 1852) est un mathématicien allemand. Comme Galois et Abel, Eisenstein est mort avant l âge de 30 ans, et comme Abel, sa mort est …   Wikipédia en Français

  • Ferdinand Eisenstein — Infobox Scientist name = Ferdinand Eisenstein box width = image width = caption = Ferdinand Eisenstein birth date = birth date|1823|04|16 birth place = Berlin, Germany death date = death date and age|1852|10|11|1823|04|16 death place = Berlin,… …   Wikipedia

  • Gotthold Eisenstein — Ferdinand Gotthold Max Eisenstein (* 16. April 1823 in Berlin; † 11. Oktober 1852 ebenda) war ein deutscher Mathematiker, der hauptsächlich in der Zahlentheorie und über elliptische Funktionen arbeitete …   Deutsch Wikipedia

  • Ferdinand Eisenstein — Pour les articles homonymes, voir Eisenstein (homonymie). Ferdinand Gotthold Max Eisenstein (16 avril 1823 11 octobre 1852) était un mathématicien allemand …   Wikipédia en Français

  • Hilbert–Speiser theorem — In mathematics, the Hilbert–Speiser theorem is a result on cyclotomic fields, characterising those with a normal integral basis. More generally, it applies to any abelian extension K of the rational field Q . The Kronecker–Weber theorem… …   Wikipedia

  • List of mathematics articles (E) — NOTOC E E₇ E (mathematical constant) E function E₈ lattice E₈ manifold E∞ operad E7½ E8 investigation tool Earley parser Early stopping Earnshaw s theorem Earth mover s distance East Journal on Approximations Eastern Arabic numerals Easton s… …   Wikipedia

  • Glossary of arithmetic and Diophantine geometry — This is a glossary of arithmetic and Diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of… …   Wikipedia

  • Cubic reciprocity — is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x3 ≡ p (mod q) is solvable; the word reciprocity comes from the form of the main theorem, which states that …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”