- Isoelectric point
The isoelectric point (pI) is the
pH at which a particularmolecule or surface carries no net electrical charge.Amphoteric molecules calledzwitterion s contain both positive and negative charges depending on thefunctional groups present in the molecule. They are affected by pH of their surrounding environment and can become more positively or negatively charged due to the loss or gain of protons (H+).The pI value can also affect the solubility of a molecule at a given pH. Such molecules have minimum
solubility in water or salt solutions at the pH which corresponds to their pI and oftenprecipitate out ofsolution . Biological amphoteric molecules such asprotein s contain both acidic and basicfunctional groups . Amino acids which make up proteins may be positive, negative, neutral or polar in nature, and together give a protein its overall charge. At apH below their pI, proteins carry a net positive charge; above their pI they carry a net negative charge. Proteins can thus be separated according to their isoelectric point (overall charge) on apolyacrylamide gel using a technique calledisoelectric focusing , which utilizes a pH gradient to separate proteins. Isoelectric focusing is also the first step in 2-D gel polyacrylamide gel electrophoresis.Calculating pI values
For an
amino acid with only oneamine and onecarboxyl group, the pI can be calculated from thepKa 's of this molecule.:
For amino acids with more than two ionizable groups, such as
lysine , the same formula is used, but this time the two pKa's used are those of the two groups that lose and gain a charge from the neutral form of the amino acid.Lysine has a single carboxylic pKa and two amine pKa values (one of which is on theR-group ), so fully protonated lysine has a +2 net charge. To get a neutral charge, we must deprotonate the lysine twice , and therefore use theR-group and amine pKa values (found atList of standard amino acids ).:
However, a more exact treatment of this requires advanced
acid /base knowledge and calculations.The
pH of an electrophoretic gel is determined by the buffer used for that gel. If thepH of the buffer is above the pI of the protein being run, theprotein will migrate to the positive pole (negative charge is attracted to a positive pole). If thepH of the buffer is below the pI of theprotein being run, theprotein will migrate to the negative pole of the gel (positive charge is attracted to the negative pole). If theprotein is run with a buffer pH that is equal to the pI, it will not migrate at all. This is also true for individual amino acids.Ceramic materials
The isoelectric points (IEP) of metal oxide ceramics are used extensively in material science in various aqueous processing steps (synthesis, modification, etc.). For these surfaces, present as colloids or larger particles in aqueous solution, the surface is generally assumed to be covered with surface hydroxyl species, M-OH (where M is a metal such as Al, Si, etc.). At pH values above the IEP, the predominate surface species is M-O-, while at pH values below the IEP, M-OH+ species predominate. Some approximate values of common ceramics are listed below (Haruta [Haruta M (2004). 'Nanoparticulate Gold Catalysts for Low-Temperature CO Oxidation', "Journal of New Materials for Electrochemical Systems", vol. 7, pp 163-172.] and Brunelle [ [http://www.iupac.org/publications/pac/1978/pdf/5009x1211.pdf Brunelle JP (1978). 'Preparation of Catalysts by Metallic Complex Adsorption on Mineral Oxides'. "Pure and Applied Chemistry" vol. 50, pp. 1211-1229.] ] , except where noted). The exact value can vary widely, depending on material factors such as purity and phase as well as physical parameters such as temperature. In addition, precise measurement of isoelectric points is difficult and requires careful techniques, even with modern methods. Thus, many sources often cite differing values for isoelectric points of these materials.
Examples of isoelectric points
The following list gives the pH25°C of isoelectric point at 25 °C for selected materials in water:
"Note: The list is ordered by increasing pH values."
*
tungsten(VI) oxide WO3: 0.2-0.5
*antimony(V) oxide Sb2O5: <0.4 to 1.9
*vanadium(V) oxide (vanadia) V2O5: 1-2 (3 )
*silicon oxide (silica) SiO2: 1.7-3.5
*silicon carbide (alpha) SiC: 2-3.5 [U.S. Patent 5,165,996]
*tantalum(V) oxide , Ta2O5: 2.7-3.0
*tin(IV) oxide SnO2: 4-5.5 (7.3 Lewis, JA (2000). 'Colloidal Processing of Ceramics', "Journal of the American Ceramic Society" vol. 83, no. 10, pp.2341-2359.] )
*zirconium(IV) oxide (zirconia) ZrO2: 4-11
*manganese(IV) oxide MnO2: 4-5
*delta-MnO2 1.5, beta-MnO2 7.3
*titanium(IV) oxide (titania) (rutile oranatase ) TiO2: 3.9-8.2
*silicon nitride Si3N4: 6-7
*iron (II, III) oxide (magnetite) Fe3O4: 6.5-6.8
*gamma iron (III) oxide (maghemite) Fe2O3: 3.3-6.7
*cerium(IV) oxide (ceria) CeO2: 6.7-8.6
*chromium(III) oxide (chromia) Cr2O3: 7 (6.2-8.1 )
*gammaaluminium oxide (gamma alumina) Al2O3: 7-8
*thallium(I) oxide Tl2O: 8 [Kosmulski M and Saneluta C (2004). 'Point of zero charge/isoelectric point of exotic oxides: Tl2O3', "Journal of Colloid and Interface Science" vol. 280, no. 2, pp. 544-545.]
*alpha iron (III) oxide (hematite) Fe2O3: 8.4-8.5
*alphaaluminium oxide (alpha alumina, corundum) Al2O3: 8-9
*silicon nitride Si3N4: 9
*yttrium(III) oxide (yttria) Y2O3: 7.15-8.95
*copper(II) oxide CuO: 9.5
*zinc oxide ZnO: 8.7-10.3
*lanthanum(III) oxide La2O3: 10
*nickel(II) oxide NiO: 10-11 (9.9-11.3 )
*lead(II) oxide PbO: 10.7-11.6 Marek Kosmulski, "Chemical Properties of Material Surfaces", Marcel Dekker, 2001.]
*magnesium oxide (magnesia) MgO: 12-13 (9.8-12.7 )Mixed oxides may exhibit isoelectric point values that are intermediate to those of the corresponding pure oxides. For example, Jara "et al." [Jara, A.A., S. Goldberg and M.L. Mora (2005). 'Studies of the surface charge of amorphous aluminosilicates using surface complexation models', "Journal of Colloid and Interface Science", vol. 292, no. 1, pp. 160-170.] measured an IEP of 4.5 for a synthetically-prepared amorphous aluminosilicate (Al2O3-SiO2). The researchers noted that the electrokinetic behavior of the surface was dominated by surface Si-OH species, thus explaining the relatively low IEP value. Significantly higher IEP values (pH 6 to 8) have been reported for 3Al2O3-2SiO2 by others (see Lewis). Lewis also lists the IEP of barium titanate, BaTiO3 as being between pH 5 and 6, while Vamvakaki et al. [ [http://www.rsc.org/ej/JM/2001/b101728o.pdf Vamvakaki, M., N.C. Billingham, S.P. Armes, J.F. Watts and S.J. Greaves (2001). 'Controlled structure copolymers for the dispersion of high-performance ceramics in aqueous media', "Journal of Materials Chemistry", vol. 11, pp. 2437-2444.] ] reported a value of 3, although these authors note that a wide range of values have been reported, a result of either residual barium carbonate on the surface or TiO2-rich surfaces.
Isoelectric point versus point of zero charge
The terms isoelectric point (IEP) and
point of zero charge (PZC) are often used interchangeably, although under certain circumstances, it may be productive to make the distinction.In systems in which H+/OH- are the interface potential-determining ions, the point of zero charge is given in the terms of pH. The pH at which the surface exhibits a neutral net electrical charge is the point of zero charge at the surface.
Electrokinetic phenomena generally measurezeta potential , and a zero zeta potential is interpreted as the point of zero net charge at the shear plane. This is termed the isoelectric point [A.W. Adamson, A.P. Gast, "Physical Chemistry of Surfaces", John Wiley and Sons, 1997.] . Thus, the isoelectric point is the value of pH at which the colloidal particle remains stationary in an electrical field. The isoelectric point is expected to be somewhat different than the point of zero charge at the particle surface, but this difference is often ignored in practice for so-called pristine surfaces, i.e., surfaces with no specifically adsorbed positive or negative charges. In this context, specific adsorption is understood as adsorption occurring the Stern layer orchemisorption . Thus, point of zero charge at the surface is taken as equal to isoelectric point in the absence of specific adsorption on that surface.
Wikimedia Foundation. 2010.