Radar jamming and deception

Radar jamming and deception

Radar jamming and deception is the intentional emission of radio frequency signals to interfere with the operation of a radar by saturating its receiver with noise or false information. There are two types of radar jamming: "Mechanical" and "Electronic jamming".

Mechanical jamming

Mechanical jamming is caused by devices which reflect or re-reflect radar energy back to the radar to produce false target returns on the operator's scope. Mechanical jamming devices include chaff, corner reflectors, and decoys.

*Chaff is made of different length metallic strips, which reflect different frequencies, so as to create a large area of false returns in which a real contact would be difficult to detect. Chaff is often aluminum for weight purposes and is usually coated with something such as a plastic to make it more slick and less likely to bind up in large clumps.

*Corner reflectors have the same effect as chaff but are physically very different. Corner reflectors are multiple-sided objects that re-radiate radar energy mostly back toward its source. An aircraft cannot carry as many corner reflectors as it can chaff.

*Decoys are maneuverable flying objects that are intended to deceive a radar operator into believing that they are actually aircraft. They are especially dangerous because they can clutter up a radar with false targets making it easier for an attacker to get within weapons range and neutralize the radar. Corner reflectors can be fitted on decoys to make them appear larger than they are, thus furthering the illusion that a decoy is an actual aircraft. Some decoys have the capability to perform electronic jamming or drop chaff.

Electronic jamming

Electronic jamming is a form of Electronic Warfare where jammers radiate interfering signals toward an enemy's radar, blocking the receiver with highly concentrated energy signals. The two main technique styles are noise techniques and repeater techniques. The three types of noise jamming are spot, sweep, and barrage.

*Spot jamming occurs when a jammer focuses all of its power on a single frequency. While this would severely degrade the ability to track on the jammed frequency, a frequency agile radar would hardly be affected because the jammer can only jam one frequency. While multiple jammers could possibly jam a range of frequencies, this would consume a great deal of resources to have any effect on a frequency-agile radar, and would probably still be ineffective.

*Sweep jamming is when a jammer's full power is shifted from one frequency to another. While this has the advantage of being able to jam multiple frequencies in quick succession, it does not affect them all at the same time, and thus limits the effectiveness of this type of jamming. Although, depending on the error checking in the device(s) this can render a wide range of devices effectively useless.

*Barrage jamming is the jamming of multiple frequencies at once by a single jammer. The advantage is that multiple frequencies can be jammed simultaneously; however, the jamming effect can be limited because this requires the jammer to spread its full power between these frequencies. So the more frequencies being jammed, the less effectively each is jammed.

*Base jamming is a new type of Barrage Jamming where one radar is jammed effectively at its source at all frequencies. However, all other radars continue working normally.

*Digital radio frequency memory, or DRFM jamming, or Repeater jamming is a repeater technique that manipulates received radar energy and retransmits it to change the return the radar sees. This technique can change the range the radar detects by changing the delay in transmission of pulses, the velocity the radar detects by changing the doppler shift of the transmitted signal, or the angle to the plane by using AM techniques to transmit into the sidelobes of the radar.

Inadvertent Jamming

In some cases, jamming of either type may be caused by friendly sources. Inadvertent mechanical jamming is fairly common because it is indiscriminate and will affect any nearby radars, hostile or not. Electronic jamming can also be inadvertently caused by friendly sources, usually powerful EW platforms operating within range of the affected radar. Unintentional electronic jamming is most easily prevented by good planning and common sense, though sometimes it is unavoidable.


*Constantly alternating the frequency that the radar operates on (frequency hopping) over a spread-spectrum will limit the effectiveness of most jamming, making it easier to read through it. Modern jammers can track a predictable frequency change, so the more random the frequency change, the more likely it is to counter the jammer.

*Cloaking the outgoing signal with random noise makes it more difficult for a jammer to figure out the frequency that a radar is operating on.

*Limiting unsecure radio communication concerning the jamming and its effectiveness is also important. The jammer could be listening, and if they know that a certain technique is effective, they could direct more jamming assets to employ this method.


While not usually caused by the enemy, interference can greatly impede the ability of an operator to track. Interference occurs when two radars in relatively close proximity (how close they need to be depends on the power of the radars) are operating on the same frequency. This will cause "running rabbits", a visual phenomenon that can severely clutter up a scope with useless data. Interference is not that common between ground radars, however, because they are not usually placed close enough together. It is more likely that some sort of airborne radar system is inadvertently causing the interference—especially when two or more countries are involved.

The interference between airborne radars referred to above can sometimes (usually) be eliminated by frequency-shifting the magnetron.

The other interference often experienced is between the aircraft's own electronic transmitters, i.e. transponders, being picked up by own radar. This interference is eliminated by suppressing the radar's reception for the duration of the transponder's transmission. Instead of "bright-light" rabbits across the display, one would observe very small black dots. Because the external radar causing the transponder to respond is generally not synchronised with your own radar (i.e. different PRFs [pulse repetition frequency] ), these black dots appear randomly across the display and the operator sees through and around them. The returning image may be much larger than the "dot" or "hole", as it has become known, anyway. Keeping the transponder's pulse widths and mode of operation becomes a crucial factor.

The external radar could, in theory, come from an aircraft flying alongside your own, or from space. Another factor often overlooked is to reduce the sensitivity of one's own transponder to external radars; i.e., ensure that the transponder's threshold is high. In this way it will only respond to nearby radars—which, after all, should be friendly.

One should also reduce the power output of the transponder in like manner.radar jamming seekerssome times the enemy adds a radar jamming seeker to the missle so if the target sends a radar jam the missle will seek the thing the sorce of the jamming signil(which is in this case your plane!)

Radar jamming in the civilian world

Radar jamming for the purposes of defeating radar guns is simpler than for military application, although it is often illegal. However, most products called radar jammers on the market do not effectively jam police radar guns but can cause an error reading giving the user time to respond (by slowing down in the case of speed guns).

See also

*Electronic attack

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Brouillage et déception radar — On appelle brouillage et déception radar une émission intentionnelle de signaux radioélectriques destinée à interférer dans le fonctionnement d un radar en saturant son récepteur soit avec un bruit puissant, soit avec de fausses données. On… …   Wikipédia en Français

  • Brouillage radar — Brouillage et déception radar On appelle brouillage et déception radar une émission intentionnelle de signaux radioélectriques destinée à interférer dans le fonctionnement d un radar en saturant son récepteur soit avec un bruit puissant, soit… …   Wikipédia en Français

  • deception jamming — An electronic countermeasure (ECM) operation whose aim is to deceive enemy sensors, especially radar. It involves transmitting fake return signals that the victim accepts as genuine. These signals often are sent when the enemy’s antenna is not… …   Aviation dictionary

  • Defence Research and Development Organisation — Sanskrit: बलस्य मूलं विज्ञानम् Strength s Origin is in Science [1] Agency overvi …   Wikipedia

  • active jamming — Electronic countermeasures in which an attempt is made to mask or suppress the enemy’s electromagnetic signals by high powered radiation or re radiation to impair the use of a specific band of frequencies. Self protection jammers, stand off… …   Aviation dictionary

  • Northrop Grumman EA-6B Prowler — EA 6B Prowler A U.S. Navy EA 6B Prowler Role Electronic warfare/Attack aircraft …   Wikipedia

  • Brouillage — et déception radar On appelle brouillage et déception radar une émission intentionnelle de signaux radioélectriques destinée à interférer dans le fonctionnement d un radar en saturant son récepteur soit avec un bruit puissant, soit avec de… …   Wikipédia en Français

  • Theory of camouflage — The theoretical basis for camouflage is the underlying methodology used in by camouflage, whether natural or man made. The definition of camouflage involves concealment and obscurity , whether applied to the natural coloration of animals, or the… …   Wikipedia

  • Chinese Information Operations and Information Warfare — are based on concepts and terms similar to those used by the United States, but the Chinese have evolved them to be more suitable and relevant to Chinese culture and to communist doctrine. While the People s Republic of China has adopted the idea …   Wikipedia

  • Missile lock-on — For other uses, see Lock On (disambiguation). Missile lock on refers to a scenario where the guidance system for a missile (or its associated launch vehicle) can accurately track a target, and a fire control system can calculate the required… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”