- Ultra exponential function
Articleissues
OR=January 2008
other=This article uses nonstandard notations, which are confusing and superfluous.Inmathematics the ultra exponential function is a special case of the iteratedexponential function more commonly known astetration , with specific extension to non-integer values of the argument.Definition
thumb|150px|">Uxp_a(x) : Divergently ultra exponential curve.
thumb|150px|">Uxp_a(x) : Convergently ultra exponential curve.
thumb|150px|">Uxp_a(x) : Increasingly Convergently ultra exponential curve.
thumb|150px|">Uxp_a(x) : Unbounded ultra exponential curve.
thumb|150px|">Uxp_a(x) : Convex ultra exponential curve.
thumb|150px|">lim_{n ightarrow infty} x^{frac{n}{ Infinite power tower.Let "a" be a positive real number. The notation a^{frac{n}{which is defined by a^{frac{n}{ =a^{a^{frac{n-1}{} (n=2,3,4,cdots), a^{frac{1}{= a is called "a" to the "ultra power" of "n". In other words a^{frac{n}{=a^{a^{.^{.^{.^a, "n" times. For other notations seetetration .Necessary and sufficient conditions for the convergence of lim_{n ightarrow infty} a^{frac{n}{ were proved by
Leonard Euler .Hooshmandcite journal
author=M.H.Hooshmand,
year=2006
title=Ultra power and ultra exponential functions
journal=Integral Transforms and Special Functions
volume=17
issue=8
pages=549-558
doi= 10.1080/10652460500422247
url=http://www.informaworld.com/smpp/content~content=a747844256?words=ultra%7cpower%7cultra%7cexponential%7cfunctions&hash=721628008 ] defined the "ultra exponential function" using thefunctional equation f(x)=a^{f(x-1)}. A main theorem in Hoooshmand's paper states: Let 0. If f:(-2,+infty) ightarrow mathbb{R} satisfies the conditions:*f(x)=a^{f(x-1)} ; ; mbox{for all} ; ; x>-1, ; f(0)=1 ,
*f is differentiable on 1,0),
* f' is a nondecreasing or nonincreasing function on 1,0),
*f'left(0^+ ight)=(ln a) f'left(0^- ight), or f'left(-1^+ ight) = f'left(0^- ight).then f is uniquely determined through the equation
:f(x)=exp^{ [x] }_a (a^{(x)})=exp^{ [x+1] }_a((x)) ; ; ; mbox{for all} ; ; x>-2,
where x)=x- [x] denotes the fractional part of x and exp^{ [x] }_a is the x] -
iterated function of the function exp_a .The ultra exponential function is then defined as mbox{uxp}_a(x)=exp^{ [x+1] }_a((x)) ; ; ; mbox{for all} ; ; x>-2 .
Ultra power
Since mbox{uxp}_a(n)=a^{ frac{n}{ , for every positive integer n, and because of the uniqueness theorem, the definition of ultra power is extended by a^{ frac{x}{= mbox{uxp}_a(x) . If 0, then a^{ frac{x}{ can be defined on a larger domain than 2,+infty).
Examples:a^{frac{0}{=1,; a^{frac{-1}{=0,; 2{ frac{4}{=65536,; e{ frac{pi /2}{=5.868...,; 0.5^{ frac{-4.3}{=4.03335...,; 0.6^{ frac{-5.264}{=-5.35997...,0.7^{ frac{3.1}{=0.7580... .
Natural ultra exponential function
The "naturalDubious|date=March 2008 ultra exponential function" e^{frac{x}{, denoted by operatorname{uxp}(x), is continuously differentiable, but its second derivative does not exist at integer values of its argument.
operatorname{uxp}'(x) is
increasing on 1,+infty), so operatorname{uxp}(x) isconvex on 1,+infty).The function chi=operatorname{uxp}' satisfies the following functional equation (
difference equation )::chi(x)=e^{ frac{x}{ chi(x-1) ; ; ; mbox{for all} ; ; x>-1.
There is another uniqueness theorem for the natural ultra exponential function that states: If f: (-2, +infty) ightarrow mathbb{R} is a function for which:
* f(x)=e^{f(x-1)} ; ; ; mbox{for all} ; ; x>-1,
* f(0)=1,
* f is convex on 1,0) ,
* f'_-(0)leq f'_+(0), then f=mbox{uxp}.Ultra exponential curves
There are five kinds of graph for the ultra exponential functions, depended onrange values of a (figures 1-5). If a>e^{frac{1}{e , then the ultra exponential curve is upper and lower unbounded. It is convex from a number on, if ageq e .
Infra logarithm function
If a>1 , then the ultra exponential function is invertible. Hooshmand cite journal
author=M.H.Hooshmand,
year=2008
title=Infra logarithm and ultra power part functions
journal=Integral Transforms and Special Functions
volume=19
issue=7
pages=497-507
doi= 10.1080/10652460801965555
url=http://www.informaworld.com/smpp/content~content=a901619070~db=all?logout=true ] denotes itsinverse function by Iog_a and calls it the "infra logarithm function". The infra logarithm function satisfies the functional equation f(a^x)=f(x)+1 .ee also
*
Tetration
*Iterated function
*Iterated logarithm References
Wikimedia Foundation. 2010.