- Equianharmonic
In
mathematics , and in particular the study ofWeierstrass elliptic function s, the equianharmonic case occurs when the Weierstrass invariants satisfy g_2=0 and g_3=1;This page follows the terminology ofAbramowitz and Stegun ; see also thelemniscatic case . (These are special examples ofcomplex multiplication ).In the equianharmonic case, the minimal half period omega_2 is real and equal to
:frac{Gamma^3(frac{1}{3})}{4pi}
where Gamma is the
Gamma function . The half period is:omega'=omega_2left(frac{1}{2}+ifrac{sqrt{3{2} ight).
Here the
period lattice is a real multiple of theEisenstein integer s.The constants e_1, e_2 and e_3 are given by
:e_1=4^{-frac{1}{3e^{frac{2pi i}{3,qquade_2=4^{-frac{1}{3,qquade_3=4^{-frac{1}{3e^{frac{2pi i}{3.
Wikimedia Foundation. 2010.