Gábor Szegő — (January 20, 1895 ndash; August 7, 1985) was a Hungarian mathematician. : The accent on the last letter is a double acute accent, which is displayed incorrectly in some browsers. LifeSzegő was born in Kunhegyes, Hungary into a Jewish family. He… … Wikipedia
List of special functions and eponyms — This is a list of special function eponyms in mathematics, to cover the theory of special functions, the differential equations they satisfy, named differential operators of the theory (but not intended to include every mathematical eponym).… … Wikipedia
List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… … Wikipedia
Hermite polynomials — In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence that arise in probability, such as the Edgeworth series; in combinatorics, as an example of an Appell sequence, obeying the umbral calculus; in numerical… … Wikipedia
Cohn's irreducibility criterion — Arthur Cohn s irreducibility criterion is a test to determine whether a polynomial is irreducible in . The criterion is often stated as follows: If a prime number p is expressed in base 10 as (where ) then the polynomial is irreducible in … Wikipedia
Orthogonal polynomials — In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the… … Wikipedia
John Hilton Grace — (1873 May 21 1958) was a British mathematician.Theorem on zeros of a polynomialIf:a(z)=a 0+ binom{n}{1}a 1 z+ binom{n}{2}a 2 z^2+dots+a n z^n,:b(z)=b 0+ binom{n}{1}b 1 z+ binom{n}{2}b 2 z^2+dots+b n z^nare two polynomials that satisfy the… … Wikipedia
Descartes' rule of signs — In mathematics, Descartes rule of signs, first described by René Descartes in his work La Géométrie, is a technique for determining the number of positive or negative real roots of a polynomial. The rule gives us an upper bound number of positive … Wikipedia
Classical orthogonal polynomials — In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials, and consist of the Hermite polynomials, the Laguerre polynomials, the Jacobi polynomials together with their special cases the ultraspherical… … Wikipedia
Lambert W function — The graph of W(x) for W > −4 and x < 6. The upper branch with W ≥ −1 is the function W0 (principal branch), the lower branch with W ≤ −1 is the function W−1. In mathematics, the Lambert W function, also called the Omega function or product… … Wikipedia