Gábor Szegő

Gábor Szegő

Gábor Szegő (January 20, 1895 – August 7, 1985) was a Hungarian mathematician.

:"The accent on the last letter is a double acute accent, which is displayed incorrectly in some browsers."

Life

Szegő was born in Kunhegyes, Hungary into a Jewish family. He married Anna Nemenyi in 1919, with whom he had two children.

In 1912 he started studies in mathematical physics at the University of Budapest, with summer visits to the University of Berlin and the University of Göttingen, where he attended lectures by Frobenius and Hilbert, amongst others. In Budapest he was taught mainly by Fejér, Beke, Kürschák and Bauer and made the acquaintance of his future collaborators George Pólya and Michael Fekete. He also coached the young János von Neumann. His studies were interrupted in 1915 by the First World War, in which he served in the infantry, artillery and air corps. In 1918 while stationed in Vienna, he was awarded a doctorate by the University of Vienna for his work on Toeplitz determinants. [ MathGenealogy |id=8363] [ [http://histsoc.stanford.edu/pdfmem/SzegoG.pdf Official memorial citation] , Stanford University.] He received his Privat-Dozent from the University of Berlin in 1921, where he stayed until being appointed as successor to Knopp at the University of Königsberg in 1926. Intolerable working conditions during the Nazi regime resulted in a temporary position at the Washington University in Saint Louis, Missouri in 1936, before his appointment as chairman of the mathematics department at Stanford University in 1938, where he helped build up the department until his retirement in 1966. He died in Palo Alto, California.

Works

Szegő's most important work was in analysis. He was the one of the foremost analysts of his generation and made fundamental contributions to the theory of Toeplitz matrices and orthogonal polynomials. He wrote over 130 papers in several languages. Each of his four books, several written in collaboration with others, has become a classic in its field. The monograph "Orthogonal polynomials", published in 1939, contains much of his research and has had a profound influence in many areas of applied mathematics, including theoretical physics, stochastic processes and numerical analysis.

Honours

Amongst the many honours received during his lifetime were:

* Julius König Prize of the Hungarian Mathematical Society (1928)
* Member of the Königsberger Gelehrten Gesellschaft (1928)
* Corresponding member of the Austrian Academy of Sciences in Vienna (1960)
* Honorary member of the Hungarian Academy of Sciences (1965)

Trivia

Szegő has Erdős number 1.

ee also

*Szegő kernel
*Szegő's limit formula
*Szegö polynomial
*Problems and theorems in analysis

Bibliography

*citation|title=The collected Papers of Gábor Szegő, 3 Vols (ed. Richard Askey)|year=1982|publisher=Birkhäuser|id=ISBN 3764330635
*citation|first=George|last=Pólya|first2=Gábor|last2=Szegő|title=Problems and theorems in analysis, 2 Vols|publisher=Springer-Verlag|year=1925, 1972
*citation|first=Gábor|last=Szegő|title=Orthogonal Polynomials|publisher=American Mathematical Society|year=1939, 1955
*citation|first=George|last=Pólya|first2=Gábor|last2=Szegő|title=Isoperimetric problems in mathematical physics|series=Annals of Mathematics Studies|volume=27|publisher=Princeton University Press|year=1951
*citation|first=Gábor|last=Szegő|first2=Ulf|last2=Grenander|title=Toeplitz forms and their applications|publisher=Chelsea|year=1958

References

External links

*MacTutor Biography|id=Szego


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Gábor Szegő — (* 20. Januar 1895 in Kunhegyes in Ungarn; † 7. August 1985 in Palo Alto) war ein ungarischer Mathematiker, der sich mit Analysis beschäftigte. Inhaltsverzeichnis 1 Leben und Werk 2 Schriften 3 Literatur …   Deutsch Wikipedia

  • Gabor Szegö — Gábor Szegö (* 20. Januar 1895 in Kunhegyes in Ungarn; † 7. August 1985 in Palo Alto ) war ein ungarischer Mathematiker, der sich mit Analysis beschäftigte. Szegö studierte in Budapest, Berlin (u.a. bei Ferdinand Georg Frobenius, Hermann Amandus… …   Deutsch Wikipedia

  • Gábor Szegö — (* 20. Januar 1895 in Kunhegyes in Ungarn; † 7. August 1985 in Palo Alto ) war ein ungarischer Mathematiker, der sich mit Analysis beschäftigte. Szegö studierte in Budapest, Berlin (u.a. bei Ferdinand Georg Frobenius, Hermann Amandus Schwarz,… …   Deutsch Wikipedia

  • Szegö — Gábor Szegö (* 20. Januar 1895 in Kunhegyes in Ungarn; † 7. August 1985 in Palo Alto ) war ein ungarischer Mathematiker, der sich mit Analysis beschäftigte. Szegö studierte in Budapest, Berlin (u.a. bei Ferdinand Georg Frobenius, Hermann Amandus… …   Deutsch Wikipedia

  • Gábor — oder Gabor ist ein häufig vorkommender ungarischer männlicher Vorname und Familienname. Inhaltsverzeichnis 1 Herkunft und Bedeutung 2 Bekannte Namensträger 2.1 Vorname …   Deutsch Wikipedia

  • Gabor — may refer to:A Hungarian family name * B. B. Gabor, a Hungary born Canadian pop singer * Dennis Gabor, a Hungarian born British physicist * Eva Gabor, a Hungarian born American actress * Gabor sisters, the three famous actresses, Eva, Magda and… …   Wikipedia

  • POLYA (G.) — George PÓLYA 1887 1985 George Pólya est une des grandes figures mathématiques du XXe siècle: par l’étendue et la variété de son œuvre, par sa personnalité, par sa popularité. Héritier de la tradition hongroise, homme d’esprit et de culture,… …   Encyclopédie Universelle

  • Fredholm determinant — In mathematics, the Fredholm determinant is a complex valued function which generalizes the determinant of a matrix. It is defined for bounded operators on a Hilbert space which differ from the identity operator by a trace class operator. The… …   Wikipedia

  • Cohn's irreducibility criterion — Arthur Cohn s irreducibility criterion is a test to determine whether a polynomial is irreducible in . The criterion is often stated as follows: If a prime number p is expressed in base 10 as (where ) then the polynomial is irreducible in …   Wikipedia

  • Fonction W de Lambert — En mathématiques, et plus précisément en analyse, la fonction W de Lambert, nommée ainsi d après Johann Heinrich Lambert, et parfois aussi appelée la fonction Oméga, est la réciproque de la fonction f définie par f(w) = wew, c est à dire que pour …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”