Szász-Mirakyan operator

Szász-Mirakyan operator

In functional analysis, a discipline within mathematics, the Szász-Mirakjan [Also spelled "Mirakyan" and "Mirakian"] operators are generalizations of Bernstein polynomials to infinite intervals. They are defined by:left [mathcal{S}_n(f) ight] (x)=e^{-nx}sum_{k=0}^infty{frac{(nx)^k}{k!}fleft(frac{k}{n} ight)}where xin [0,infty)subsetmathbb{R} and ninmathbb{N}.cite journal| last=Szász | first=Otto | year=1950 | title=Generalizations of S. Bernstein's polynomials to the infinite interval | journal=Journal of Research of the National Bureau of Standards | volume=45 | issue=3 | pages=239–245 | url=http://nvl.nist.gov/pub/nistpubs/jres/045/3/V45.N03.A09.pdf] cite journal| last=Walczak | first=Zbigniew | year=2003 | title=On modified Szasz-Mirakyan operators | journal=Novi Sad Journal of Mathematics | volume=33 | issue=1 | pages=93–107 | url=http://www.emis.de/journals/NSJOM/33_1/rad-08.pdf]

Basic results

In 1964, Cheney and Sharma showed that if f is convex and non-linear, the sequence (mathcal{S}_n(f))_{ninmathbb{N decreases with n (mathcal{S}_n(f)geq f).cite journal|last=Cheney|first=Edward W.|coauthors=A. Sharma|year=1964|title=Bernstein power series|journal=Canadian Journal of Mathematics|volume=16|issue= [http://books.google.com/books?id=RSNqggY5Q5cC&dq 2] |pages=241–252] They also showed that if f is a polynomial of degree leq m, then so is mathcal{S}_n(f) for all n.

A converse of the first property was shown by Horová in 1968 (Altomare & Campiti 1994:350).

Theorem on convergence

In Szász's original paper, he proved the following::: If f is continuous on (0,infty), then mathcal{S}_n(f) converges uniformly to f as n ightarrowinfty.This is analogous to [Bernstein polynomial#Approximating continuous functions|a theorem stating that Bernstein polynomials approximate continuous functions on [0,1] .

Generalizations

A Kantorovich-type generalization is sometimes discussed in the literature. These generalizations are also called the Szász-Mirakyan-Kantorovich operators.

In 1976, C. P. May showed that the Baskakov operators can reduce to the Szász-Mirakyan operators.cite journal|last=May|first=C. P.|year=1976|title=Saturation and inverse theorems for combinations of a class of exponential-type operators|journal=Canadian Journal of Mathematics|volume=28|issue=6|pages=1224–1250|url=http://books.google.com/books?hl=en&lr=&id=irg7sNuSTT8C&oi=fnd&pg=PA1224&ots=cdhSVISxAs&sig=OW7T5zOvK9PSaEsmT9_40BG0Pdc]

References

*cite book|last=Altomare|first=Francesco|coauthors=Michele Campiti|year=1994|title=Korovkin-Type Approximation Theory and Its Applications|publisher=Walter de Gruyter|isbn=3110141787
*cite journal| last=Favard | first=Jean | authorlink=Jean Favard | year=1944 | title=Sur les multiplicateurs d'interpolation | journal=Journal de Mathematiques Pures et Appliquees | volume=23 | issue=9 | pages=219–247 fr icon (Also see Favard operators)
*cite journal|last=Horová|first=Ivana|year=1968|title=Linear positive operators of convex functions|journal=Mathematica (Cluj)|volume=10|issue=33|pages=275–283|id=Zbl|0186.11101
*cite journal| last=Kac | first=Mark | authorlink=Mark Kac | year=1938 | title=Une remarque sur les polynomes de M. S. Bernstein | journal=Studia Mathematica | volume=7 | pages=49–51 | id=Zbl|0018.20704 | url=http://matwbn.icm.edu.pl/ksiazki/sm/sm7/sm715.pdf fr icon
*cite journal| last=Kac | first=Mark | authorlink=Mark Kac | year=1939 | title=Reconnaissance de priorité relative à ma note 'Une remarque sur les polynomes de M. S. Bernstein' | journal=Studia Mathematica | volume=8 | pages=170 | id=JFM|65.0248.03 | url=http://matwbn.icm.edu.pl/ksiazki/sm/sm8/sm8111.pdf fr icon
*cite journal| last=Mirakjan | first=G. M. | year=1941 | title=Approximation of continuous functions with the aid of polynomials of the form e^{-nx}sum_{k=0}^{m_n}{C_{k,n}x^k} ( _fr. Approximation des fonctions continues au moyen de polynômes de la forme e^{-nx}sum_{k=0}^{m_n}{C_{k,n}x^k}) | journal=Proceedings of the USSR Academy of Sciences | volume=31 | pages=201-205 | id=JFM|67.0216.03 fr icon
*cite journal|last=Wood|first=B.|year=1969|month=July|title=Generalized Szasz operators for the approximation in the complex domain|journal=SIAM Journal on Applied Mathematics|volume=17|pages=790–801|url=http://links.jstor.org/sici?sici=0036-1399%28196907%2917%3A4%3C790%3AGSOFTA%3E2.0.CO%3B2-F | id=Zbl|0182.08801|issue=4|doi=10.1137/0117071

Footnotes


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Szász-Mirakyan-Kantorovich operator — In functional analysis, a discipline within mathematics, the Szász Mirakjan Kantorovich operators are defined by: [mathcal{T} n(f)] (x)=ne^{ nx}sum {k=0}^infty{frac{(nx)^k}{k!}int {k/n}^{(k+1)/n}f(t),dt}where xin [0,infty)subsetmathbb{R} and… …   Wikipedia

  • Otto Szász — (11 December 1884, Hungary – 19 December 1952, Cincinnati, Ohio) was a Hungarian mathematician who worked on real analysis, in particular on Fourier series. He proved the Müntz–Szász theorem and introduced the Szász–Mirakyan operator. The… …   Wikipedia

  • Favard operator — In functional analysis, a branch of mathematics, the Favard operators are defined by:: [mathcal{F} n(f)] (x) = frac{sqrt{n{nsqrt{cpi sum {k= infty}^infty {exp{left({frac{ n}{c} {left({frac{k}{n} x} ight)}^2 } ight)} fleft(frac{k}{n} ight)}where… …   Wikipedia

  • Baskakov operator — In functional analysis, a branch of mathematics, the Baskakov operators are generalizations of Bernstein polynomials, Szász Mirakyan operators, and Lupas operators. They are defined by: [mathcal{L} n(f)] (x) = sum {k=0}^infty {( 1)^k… …   Wikipedia

  • List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”