- Favard operator
In
functional analysis , a branch ofmathematics , the Favard operators are defined by::
where , , and .cite journal| last=Nowak | first=Grzegorz | coauthors=Aneta Sikorska-Nowak | year=2007 | month=November | day=14 | title=On the generalized Favard-Kantorovich and Favard-Durrmeyer operators in exponential function spaces | journal=Journal of Inequalities and Applications | volume=2007 | url=http://www.hindawi.com/journals/jia/raa.75142.html | doi=10.1155/2007/75142 | pages=1] They are named after
Jean Favard .Generalizations
A common generalization is::
where is a positive sequence that converges to 0. This reduces to the classical Favard operators when .
References
*cite journal| last=Favard | first=Jean | authorlink=Jean Favard | year=1944 | title=Sur les multiplicateurs d'interpolation | journal=Journal de Mathematiques Pures et Appliquees | volume=23 | issue=9 | pages=219–247 fr icon This paper also discussed
Szász-Mirakyan operators , which is why Favard is sometimes credited with their development (eg Favard-Szász operators).Footnotes
Wikimedia Foundation. 2010.