Naum Akhiezer

Naum Akhiezer
Naum Akhiezer

Naum Ilyich Akhiezer
Born 6 March 1901(1901-03-06)
Cherikov, Russian Empire (present-day Belarus)
Died 3 June 1980(1980-06-03) (aged 79)
Kharkov, USSR
Nationality USSR
Fields Mathematics
Institutions Kharkov State University, Kharkiv Polytechnic Institute, Kharkiv Aviation Institute
Alma mater Kiev Institute of Public Education
Doctoral advisor Dmitry Grave
Doctoral students Boris Levitan
Known for Akhiezer polynomials, Baker–Akhiezer function, Akhiezer–Krein–Favard theorem, Akhiezer's theorem

Naum Ilyich Akhiezer (Russian: Нау́м Ильи́ч Ахие́зер) (6 March 1901 – 3 June 1980) was a Soviet mathematician of Jewish origin, known for his works in approximation theory and the theory of differential and integral operators.[1][2][3]. He is also known as the author of classical books on various subjects in analysis, and for his work on the history of mathematics. He is the brother of the theoretical physicist Aleksander Ilyich Akhiezer.

Contents

Biography

Naum Akhiezer was born in Cherikov (now in Belarus). He studied in the Kiev Institute of Public Education (now Taras Shevchenko National University of Kyiv). In 1928, he defended his PhD thesis "Aerodynamical Investigations" under the supervision of Dmitry Grave. From 1928 to 1933, he worked at the Kiev University and at the Kiev Aviation Institute.

In 1933, Naum Akhiezer moved to Kharkov. From 1933 to his death, except for the years of war and evacuation, he was a professor at Kharkov University and at other institutes in Kharkov. From 1935 to 1940 and from 1947 to 1950 he was director of the Kharkov Institute of Mathematics and Mechanics. For many years he headed the Kharkov Mathematical Society.

Work

Akhiezer obtained important results in approximation theory (in particular, on extremal problems, constructive function theory, and the problem of moments), where he masterly applied the methods of the geometric theory of functions of a complex variable (especially, conformal mappings and the theory of Riemann surfaces) and of functional analysis.[2][3] He found the fundamental connection between the inverse problem for important classes of differential and finite difference operators of the second order with a finite number of gaps in the spectrum, and the Jacobi inversion problem for Abelian integrals.[3] This connection led to explicit solutions of the inverse problem for the so-called finite-gap operators.

Some publications

Books in analysis

  1. Ахиезер, Н.И. (2001). Избранные труды по теории функций и математической физике (vol. 1–2) [Selected works in function theory and mathematical physics]. Kharkiv: Acta. 
  2. Ахиезер, Н.И. (1984). Лекции об интегральных преобразованиях. Kharkov: Vishcha Shkola.  English translation: Akhiezer, N. I. (1988). Lectures on Integral Transforms. Providence, RI: American Mathematical Society. MR0971981. 
  3. Ахиезер, Н.И. (1981). Вариационное исчисление. Kharkov: Vishcha Shkola. . English translation: Akhiezer, N. I. (1988). The calculus of variations.. Chur: Harwood Academic Publishers. ISBN 3-7186-4805-9. MR0949441. 
  4. Ахиезер, Н.И. (1977–8). Теория линейных операторов в Гильбертовом пространстве (vol. 1–2) (3rd ed.). Kharkov: Vishcha Shkola. . English translation: Akhiezer, N.I.; Glazman, I.M. (1981). Theory of Linear Operators in Hilbert Space (vol. 1 – 2) (3rd ed.). Boston, Mass. – London: Pitman (Advanced Publishing Program). MR0615736. 
  5. Ахиезер, Н.И. (1970). Элементы теории эллиптических функций. Moscow: Nauka.  English translation: Akhiezer, N. I. (1990). Elements of the theory of elliptic functions. Providence, RI: American Mathematical Society. ISBN 0-8218-4532-2. MR1054205. 
  6. Ахиезер, Н.И. (1961). Классическая проблема моментов и некоторые вопросы анализа, связанные с нею. Moscow: Gosudarstv. Izdat. Fiz.-Mat. Lit..  English translation: Akhiezer, N. I. (1965). The Classical Moment Problem and Some Related Questions in Analysis. Oliver & Boyd. 
  7. Ахиезер, Н.И. (1965). Лекции по теории аппроксимации (2nd ed.). Moscow: Nauka.  English translation (of the 1st edition): Achiezer, N. I. (1956). Theory of approximation. Translated by Charles J. Hyman. New York: Frederick Ungar Publishing. 
  8. Ахиезер, Н.И.; Крейн, М.Г. (1938). О некоторых вопросах теории моментов. Kharkov: GONTI.  English translation: Akhiezer, N.I.; Krein, M.G. (1962). Some questions in the theory of moments. Providence, R.I.: American Mathematical Society. MR0167806. 

History of mathematics

  1. Ахиезер, Н.И. (1955). Академик С. Н. Бернштейн и его работы по конструктивноĭ теории функций [Academician S. N. Bernstein and his work on the constructive theory of functions]. Kharkov: Izdat. Harʹkov. Gosudarstv. Univ.  German translation: Akhiezer, N.I. (2000). "Das Akademiemitglied S.N.Bernstein und seine Arbeiten zur konstruktiven Funktionentheorie". Mitt. Math. Sem. Giessen 240. MR1755757. 
  2. Ahiezer, N.I.; Petrovskiĭ, I.G. (1961). "The contribution of S. N. Bernšteĭn to the theory of partial differential equations" (in Russian). Uspehi Mat. Nauk 16 (2 (98)): 5–20. MR0130816. 
  3. Ahiezer, N.I. (1978). "On the spectral theory of Lamé's equation" (in Russian). Istor.-Mat. Issled. 23: 77–86. MR0517631. 
  4. Akhiezer, N.I. (1998). "Function theory according to Chebyshev". Mathematics of the 19th century. Basel: Birkhäuser. pp. 1–81. MR1634233. 

References

External links



Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Naum — may refer to: People Naum Akhiezer, Soviet mathematician Naum Gabo, Russian sculptor Naum Idelson, Soviet astronomer Naum Kleiman, historian of cinema Naum Krasner, Russian mathematician and economist Naum Levin, Ukrainian–Australian chess master …   Wikipedia

  • Naum Ilyich Akhiezer — ( ru. Наум Ильич Ахиезер) (6 March, 1901, Cherikov, Belarus – 3 June, 1980, Kharkov, USSR) was a mathematician of Jewish origin, known for his works in constructive function theory, approximation theory, the problem of moments, operator theory… …   Wikipedia

  • Naum Achiezer — Naum Iljitsch Achijeser (* 6. März 1901 in Tscherikaw, Weißrussland; † 3. Juni 1980 in Charkow) war ein russischer bzw. ukrainischer Mathematiker, der sich mit Funktionalanalysis und Approximationstheorie beschäftigte. Leben und Wirken Naum… …   Deutsch Wikipedia

  • Naum Iljitsch Achiezer — Naum Iljitsch Achijeser (* 6. März 1901 in Tscherikaw, Weißrussland; † 3. Juni 1980 in Charkow) war ein russischer bzw. ukrainischer Mathematiker, der sich mit Funktionalanalysis und Approximationstheorie beschäftigte. Leben und Wirken Naum… …   Deutsch Wikipedia

  • Akhiezer — Achijeser (auch Achiezer) ist der Familienname folgender Personen: Alexander Iljitsch Achijeser (1911–2000), russisch ukrainischer Physiker Naum Iljitsch Achijeser (1901–1980), russisch ukrainischer Mathematiker …   Deutsch Wikipedia

  • Moment (mathématiques) — Pour les articles homonymes, voir Moment. En probabilités (mathématiques, statistiques), on définit le moment d ordre n>0 d une variable aléatoire X, s il existe, le nombre . Sommaire 1 …   Wikipédia en Français

  • Dmitry Grave — Born September 6, 1863(1863 09 06) Kirillov, Novgorod Governorate, R …   Wikipedia

  • Théorème de prolongement de M. Riesz — Le théorème de prolongement de M. Riesz a été démontré par le mathématicien Marcel Riesz lors de son étude du problème des moments. Sommaire 1 Formulation 2 Démonstration 3 Corollaire : théorème de prolongement de Krein …   Wikipédia en Français

  • Orthogonal polynomials — In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the… …   Wikipedia

  • Alexander Achijeser — Alexander Iljitsch Achijeser (russisch Александр Ильич Ахиезер, im Deutschen manchmal auch Achieser transkribiert, Englische Transliteration Aleksandr Il´ich Akhiezer, * 31. Oktober 1911 in Tscherikaw, Weißrussland; † 4. Mai 2000) war ein… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”