Constructive function theory
- Constructive function theory
-
In mathematical analysis, constructive function theory is a field which studies the connection between the smoothness of a function and its degree of approximation[1][2]. It is closely related to approximation theory. The term was coined by Sergei Bernstein.
Example
Let f be a 2π-periodic function. Then f is α-Hölder for some 0 < α < 1 if and only if for every natural n there exists a trigonometric polynomial Pn of degree n such that
where C(f) is a positive number depending on f. The "only if" is due to Dunham Jackson, see Jackson's inequality; the "if" part is due to Sergei Bernstein, see Bernstein's theorem (approximation theory).
Notes
References
- N. I. Achiezer (Akhiezer), Theory of approximation, Translated by Charles J. Hyman Frederick Ungar Publishing Co., New York 1956 x+307 pp.
Wikimedia Foundation.
2010.
Look at other dictionaries:
Constructive set theory — is an approach to mathematical constructivism following the program of axiomatic set theory. That is, it uses the usual first order language of classical set theory, and although of course the logic is constructive, there is no explicit use of… … Wikipedia
Constructive Approximation — Abbreviated title (ISO) Constr. Approx. Discipline mathematics … Wikipedia
Constructive analysis — In mathematics, constructive analysis is mathematical analysis done according to the principles of constructive mathematics. This contrasts with classical analysis, which (in this context) simply means analysis done according to the (ordinary)… … Wikipedia
Function (mathematics) — f(x) redirects here. For the band, see f(x) (band). Graph of example function, In mathematics, a function associates one quantity, the a … Wikipedia
Theory (mathematical logic) — This article is about theories in a formal language, as studied in mathematical logic. For other uses, see Theory (disambiguation). In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. Usually… … Wikipedia
Theory of multiple intelligences — Human intelligence Abilities and Traits Abstract thought Communication · Creativity Emotional Intelligence Kn … Wikipedia
constructive — A constructive proof is one that enables one to give an example, or give a rule for finding an example, of a mathematical object with some property. A nonconstructive proof might result in us knowing that an example exists, but having no idea how … Philosophy dictionary
Intuitionistic type theory — Intuitionistic type theory, or constructive type theory, or Martin Löf type theory or just Type Theory is a logical system and a set theory based on the principles of mathematical constructivism. Intuitionistic type theory was introduced by Per… … Wikipedia
Computability theory — For the concept of computability, see Computability. Computability theory, also called recursion theory, is a branch of mathematical logic that originated in the 1930s with the study of computable functions and Turing degrees. The field has grown … Wikipedia
Computable function — Total recursive function redirects here. For other uses of the term recursive function , see Recursive function (disambiguation). Computable functions are the basic objects of study in computability theory. Computable functions are the formalized … Wikipedia