- Gold extraction
Gold extraction or recovery from itsore s may require a combination ofcomminution ,mineral processing , hydrometallurgical, and pyrometallurgical processes to be performed on the ore. [cite web
url=http://geology.com/publications/getting-gold/gold-extraction.shtml
title=Gold Extraction - Gold Mining - Washing, Amalgamation, Leaching, Smelting
publisher=geology.com
accessdate=2008-03-20
last=
first=] techniques.Once the ore is mined it can be treated as a whole ore using a
dump leaching orheap leaching processes. This is typical of low-grade, oxide deposits. Normally, the ore is crushed and agglomerated prior to heap leaching. High grade ores and ores resistant tocyanide leaching at coarse particle sizes, require further processing in order to recover the gold values. The processing techniques can include grinding, concentration, roasting, and pressure oxidation prior to cyanidation.Types of ore
Gold occurs principally as a
native metal , usuallyalloy ed to a greater or lesser extent withsilver (aselectrum ), or sometimes with mercury (as anamalgam ). Native gold can occur as sizeable nuggets, as fine grains or flakes in alluvial deposits, or as grains or microscopic particles embedded in other rocks.Ores in which gold occurs in chemical composition with other elements are comparatively rare. They include
calaverite ,sylvanite ,nagyagite ,petzite andkrennerite .Concentration
Gravity concentration has been historically the most important way of extracting the native metal using pans or washing tables. However,
froth flotation processes may also be used to concentrate the gold. In some cases, particularly when the gold is present in the ore as discrete coarse particles, a gravity concentrate can be directly smelted to form gold bars. In other cases, particularly when the gold is present in the ore as fine particles or is not sufficiently liberated from the host rock, the concentrates are treated withcyanide salts, a process known as cyanidation leaching, followed by recovery from the leach solution. Recovery from solution typically involves adsorption on activated carbon followed by solution concentration or stripping and orelectrowinning .Froth flotation is usually applied when the gold present in an ore is closely associated with
sulfide mineral s such aspyrite orarsenopyrite , and when such sulfides are present in large quantities in the ore. In this case, concentration of the sulfides results in concentration of gold values. Generally, recovery of the gold from the sulfide concentrates requires further processing, usually by roasting or wet pressure oxidation. These pyrometallurgical or hydrometallurgical treatments are themselves usually followed by cyanidation and carbon adsorption techniques for final recovery of the gold.Sometimes gold is present as a minor constituent in a
base metal (e.g. copper) concentrate, and is recovered as a by-product during production of the base metal. For example, it can be recovered in theanode slime during the electrorefining process.Leaching
If the gold can not be concentrated for smelting, then it is leached by an
aqueous solution:# The
cyanide process is the industry standard.
#Thiosulfate leaching has been proven to be effective on ores with high solublecopper values or ores which experience pregrobbing by carbonaceous components.Refractory gold processes
A "refractory" gold ore is an ore that is naturally resistant to recovery by standard cyanidation and carbon adsorption processes. These refractory ores require pre-treatment in order for cyanidation to be effective in recovery of the gold. A refractory ore generally contains sulfide minerals, organic carbon, or both. Sulfide minerals often trap or occlude gold particles, making it difficult for the leach solution to complex with the gold. Organic carbon present in gold ore may adsorb dissolved gold-cyanide complexes in much the same way as activated carbon. This so-called "preg-robbing" carbon is washed away because it is significantly finer than the carbon recovery screens typically used to recover activated carbon.
Pre-treatment options for refractory ores include:
# Roasting
# Bio-oxidation
# Pressure oxidation
# Ultrafine grindingThe refractory ore treatment processes may be preceded by concentration (usually sulfide flotation). Roasting is used to oxidize both the sulfur and organic carbon at high temperatures using air and/or oxygen. Bio-oxidation involves the use of bacteria that promote oxidation reactions in an aqueous environment. Pressure oxidation an aqueous process for sulfur removal carried out in a continuous autoclave, operating at high pressures and somewhat elevated temperatures. Ultrafine grinding may be used when liberation of gold particles from the surrounding mineral matrix is the primary refractory characteristic of the ore.
Gold smelting
Mercury removal
Mercury is a health hazard, especially when in gas form. To remove this hazard, before smelting, gold precipitates from
electrowinning or Merrill-Crowe processes are usually heated in aretort to recover any mercury present, that would otherwise cause health and environmental problems due to its release (volatilization) during smelting. The mercury present is not usually from themercury amalgamation process that is no longer used by formal gold mining companies, but from mercury in the ore that has followed gold through the leaching and precipitation processes.In the event that there are high levels of
copper orsilver present, leaching of the precipitate using nitric orsulfuric acid s may be required.Iron removal
Nitric acid or forced air oven oxidation can also be used to dissolve iron from the electrowinning cathodes before smelting. Gravity concentrates can often contain high grinding steel contents, and so their removal using shaking tables or magnets is used before smelting.During smelting iron can be oxidized using
nitre . Excessive use of nitre will corrode the smelting pot, increasing both maintenance costs and the risk of catastrophic leaks (known as "run-aways", or holes in the pot through which the molten charge is lost).Gold from electronics and other scrap
Gold can be extracted from electronics scrap, scrap jewelry, and dental scrap. The gold in these items is still valuable, but must first be extracted from the scrap in order to be returned into circulation in its purified form.
Recovering gold from electronics scrap begins with the enectration of large amounts of outdated or defective electronics and computer equipment. Additional sources include manufacturers scrap and surplus discrete electronics components. The greatest concentrations of gold in scrap electronics are in the CPUs, card edge connectors, and component interconnects. The gold on these items is typically plated in very thin layers.
ee also
*
Digger gold
*Gold mining
*Ore genesis References
Gallery
Wikimedia Foundation. 2010.