Semantic analysis (machine learning)
- Semantic analysis (machine learning)
In machine learning, semantic analysis of a corpus is the task of building structures that approximate concepts from a large set of documents. It generally does not involve prior semantic understanding of the documents.
Latent semantic analysis (sometimes latent semantic indexing), is a class of techniques where documents are represented as vectors in term space. A prominent example is PLSI.
Latent Dirichlet allocation involves attributing document terms to topics.
n-grams and hidden Markov models work by representing the term stream as a markov chain where each term is derived from the few terms before it.
Wikimedia Foundation.
2010.
Look at other dictionaries:
Semantic analysis — may refer to: *Semantic analysis (compilers) *Semantic analysis (machine learning) *Semantic analysis (knowledge representation) *Semantic analysis (linguistics) … Wikipedia
Probabilistic latent semantic analysis — (PLSA), also known as probabilistic latent semantic indexing (PLSI, especially in information retrieval circles) is a statistical technique for the analysis of two mode and co occurrence data. PLSA evolved from Latent semantic analysis, adding a… … Wikipedia
Semantic similarity — or semantic relatedness is a concept whereby a set of documents or terms within term lists are assigned a metric based on the likeness of their meaning / semantic content. Concretely, this can be achieved for instance by defining a topological… … Wikipedia
Semantic advertising — applies semantic technologies to online advertising solutions. The function of semantic advertising technology is to semantically analyze every web page in order to properly understand and classify the meaning of a web page and accordingly ensure … Wikipedia
Semantic Web — The Semantic Web is an evolving extension of the World Wide Web in which the semantics of information and services on the web is defined, making it possible for the web to understand and satisfy the requests of people and machines to use the web… … Wikipedia
Semantic relatedness — Computational Measures of Semantic Relatedness are [http://cwl projects.cogsci.rpi.edu/msr/ publically available] means for approximating the relative meaning of words/documents. These have been used for essay grading by the Educational Testing… … Wikipedia
Sentiment analysis — or opinion mining refers to the application of natural language processing, computational linguistics, and text analytics to identify and extract subjective information in source materials. Generally speaking, sentiment analysis aims to determine … Wikipedia
Concept learning — Concept learning, also known as category learning, concept attainment, and concept formation, is largely based on the works of the cognitive psychologist Jerome Bruner. Bruner, Goodnow, Austin (1967) defined concept attainment (or concept… … Wikipedia
Cluster analysis — The result of a cluster analysis shown as the coloring of the squares into three clusters. Cluster analysis or clustering is the task of assigning a set of objects into groups (called clusters) so that the objects in the same cluster are more… … Wikipedia
Finite-state machine — State machine redirects here. For infinite state machines, see State transition system. For fault tolerance methodology, see State machine replication. SFSM redirects here. For the Italian railway company, see Circumvesuviana. A finite state… … Wikipedia