- BCM theory
BCM theory, BCM synaptic modification, or the BCM rule, named for
Elie Bienenstock ,Leon Cooper , andPaul Munro , is a physical theory of learning in thevisual cortex developed in 1981. Due to its successful experimental predictions, the theory is arguably the most accurate model ofsynaptic plasticity to date.Development
In 1949,
Donald Hebb proposed a working mechanism for memory and computational adaption in the brain calledHebbian learning , or the maxim that "cells that fire together, wire together". This law formed the basis of the brain as the modernneural network , theoretically capable ofTuring complete computational complexityFact|date=July 2008, and thus became a standard materialist model for the mind.However, Hebb's rule has problems, namely that it has no mechanism for connections to get weaker and no upper bound for how strong they can get. In other words, the model is unstable, both theoretically and computationally. Later modifications gradually improved Hebb's rule, normalizing it and allowing for decay of synapses, where no activity or unsynchronized activity between neurons results in a loss of connection strength. New biological evidence brought this activity to a peak in the 1970s, where theorists formalized various approximations in the theory, such as the use of firing frequency instead of potential in determining neuron excitation, and the assumption of ideal and, more importantly, linear synaptic integration of signals. That is, there is no unexpected behavior in the adding of input currents to determine whether or not a cell will fire.
These approximations resulted in the basic form of BCM below in 1979, but the final step came in the form of mathematical analysis to prove stability and computational analysis to prove applicability, culminating in Bienenstock, Cooper, and Munro's 1982 paper.
Since then, experiments have shown evidence for BCM behavior in both the
visual cortex and thehippocampus , the latter of which plays an important role in the formation and storage of memories. Both of these areas are well-studied experimentally, but both theory and experiment have yet to establish conclusive synaptic behavior in other areas of the brain. Furthermore, a biological mechanism forsynaptic plasticity in BCM has yet to be established. [cite journal |last=Cooper |first=L.N. |authorlink=Leon Cooper |year=2000 |month= |title=Memories and memory: A physicist's approach to the brain |journal=International Journal of Modern Physics A |volume=15 |issue=26 |pages=4069–4082 |id= |url=http://physics.brown.edu/physics/researchpages/Ibns/Lab%20Publications%20(PDF)/memoriesandmemory.pdf |accessdate= 2007-11-11 |quote= ]Theory
The basic BCM rule takes the form
:,
where is the synaptic weight of the th synapse, is that synapse's input current, is the weighted presynaptic output vector, is the postsynaptic
activation function that changes sign at some output threshold , and is the (often negligible) time constant of uniform decay of all synapses.This model is merely a modified form of the
Hebbian learning rule, , and requires a suitable choice of activation function, or rather, the output threshold, to avoid the Hebbian problems of instability. This threshold was derived rigorously in BCM noting that with and the approximation of the average output , for one to have stable learning it is sufficient that:, and:,
or equivalently, that the threshold , where and are fixed positive constants. [cite journal |last=Bienenstock |first=Elie L. |authorlink=Elie Bienenstock |coauthors=
Leon Cooper ,Paul Munro |year=1982 |month=January |title=Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex |journal=The Journal of Neuroscience |volume=2 |issue=1 |pages=32–48 |id= |url=http://www.physics.brown.edu/physics/researchpages/Ibns/Cooper%20Pubs/070_TheoryDevelopment_82.pdf |accessdate= 2007-11-11 |quote= ]When implemented, the theory is often taken such that
:,
where angle brackets are a time average and is the time constant of selectivity.
The model has drawbacks, as it requires both
long-term potentiation andlong-term depression , or increases and decreases in synaptic strength, something which has not been observed in all cortical systems. Further, it requires a variable activation threshold and depends strongly on stability of the selected fixed points and . However, the model's strength is that it incorporates all these requirements from independently-derived rules of stability, such as normalizability and a decay function with time proportional to the square of the output. [cite web |url=http://www.cs.tau.ac.il/~nin/Courses/NC05/BCM.ppt |title=The BCM theory of synaptic plasticity |accessdate=2007-11-11 |last=Intrator |first=Nathan |coauthors= |date=2006-2007 |work=Neural Computation |publisher=School of Computer Science, Tel-Aviv University ]Experiment
The first major experimental confirmation of BCM came in 1992 in investigating LTP and LTD in the
hippocampus . The data showed qualitative agreement with the final form of the BCM activation function. [cite journal |last=Dudek |first=Serena M. |authorlink=Serena Dudek |coauthors=Mark Bear |year=1992 |month= |title=Homosynaptic long-term depression in area CAl of hippocampus and effects of N-methyl-D-aspartate receptor blockade |journal=Proc. Natl. Acad. Sci. |volume=89 |issue= |pages=4363–4367 |id= |url=http://www.pnas.org/cgi/reprint/89/10/4363.pdf |accessdate= 2007-11-11 |quote=|doi=10.1073/pnas.89.10.4363 ] This experiment was later replicated in thevisual cortex , where BCM was originally designed to model [cite journal |last=Kirkwood |first=Alfredo |authorlink=Alfredo Kirkwood |coauthors=Marc G. Rioult ,Mark F. Bear |year=1996 |month= |title=Experience-dependent modification of synaptic plasticity in rat visual cortex |journal=Nature |volume=381 |issue= |pages=526–528 |id= |url=http://www.nature.com/nature/journal/v381/n6582/abs/381526a0.html |accessdate= 2007-11-11 |quote=|doi=10.1038/381526a0 ] This work provided further evidence of the necessity for a variable threshold function for stability in Hebbian-type learning (BCM or others).Experimental evidence has been non-specific to BCM until Rittenhouse "et al." confirmed BCM's prediction of synapse modification in the visual cortex when one eye is selectively closed. Specifically,
:,
where describes the variance in spontaneous activity or noise in the closed eye and is time since closure. Experiment agreed with the general shape of this prediction and provided an explanation for the dynamics of monocular eye closure versus binocular eye closure. [cite journal |last=Rittenhouse |first=Cynthia D. |authorlink= |coauthors=Harel Z. Shouval, Michael A. Paradiso, Mark F. Bear |year=1999 |month= |title=Monocular deprivation induces homosynaptic long-term depression in visual cortex |journal=Nature |volume=397 |issue= |pages=347 |id= |url=http://www.nature.com/nature/journal/v397/n6717/abs/397347a0.html |accessdate= 2007-11-11 |quote=|doi=10.1038/16922 ] The experimental results are far from conclusive, but so far have favored BCM over competing theories of plasticity.
Applications
While the algorithm of BCM is too complicated for large-scale
parallel distributed processing , it has been put to use in lateral networks with some success. [cite web |url=http://www.cs.tau.ac.il/~nin/Courses/NC05/bcmppr.pdf |title=BCM Learning Rule, Comp Issues |accessdate=2007-11-11 |last=Intrator |first=Nathan |coauthors= |date=2006-2007 |work=Neural Computation |publisher=School of Computer Science, Tel-Aviv University ] Furthermore, some existing computational network learning algorithms have been made to correspond to BCM learning. [cite journal |last=Baras |first=Dorit |authorlink= |coauthors=Ron Meir |year=2007 |month= |title=Reinforcement Learning, Spike-Time-Dependent Plasticity, and the BCM Rule |journal=Neural Computation |volume= |issue=19 |pages=2245–2279 |id=2561 |url=http://eprints.pascal-network.org/archive/00002561/01/RL-STDP_Final.pdf |accessdate=2007-11-11 |quote=|doi=10.1162/neco.2007.19.8.2245 ]References
External links
* [http://www.scholarpedia.org/article/BCM_rule Scholarpedia article]
Wikimedia Foundation. 2010.