- Logical harmony
Logical harmony, a name coined by
Sir Michael Dummett , is a supposed constraint on therules of inference that can be used in a givenlogical system .The logician
Gerhard Gentzen proposed that the meanings of logicalconnective s could be given by the rules for introducing them into discourse. For example, if one believes that "the sky is blue" and one also believes that "grass is green", then one can introduce the connective "and" as follows: "The sky is blue AND grass is green." Gentzen's idea was that having rules like this is what gives meaning to one's words, or at least to certain words. The idea has also been associated withWittgenstein 's dictum that in many cases we can say, the meaning is the use. Most contemporary logicians prefer to think that theintroduction rule s and theelimination rules for an expression are equally important. In this case, "and" is characterized by the following rules:An apparent problem with this was pointed out by
Arthur Prior : Why can't we have an expression (call it "tonk") whose introduction rule is that of OR (from "p" to "p tonk q") but whose elimination rule is that of AND (from "p tonk q" to "q")? This lets us deduce anything at all from any starting point. Prior suggested that this meant that inferential rules could "not" determine meaning. He was answered byNuel Belnap , that even though introduction and elimination rules can constitute meaning, not just any pair of such rules will determine a meaningful expression – they must meet certain constraints, such as not allowing us to deduce any new truths in the old vocabulary (see:Inferential Conservativeness ). These constraints are what Dummett was referring to.Harmony, then, refers to certain constraints that a proof theory must let hold between introduction and elimination rules for it to be meaningful, or in other words, for its inference rules to be meaning-constituting.
The application of harmony to logic may be considered a special case; it makes sense to talk of harmony with respect to not only inferential systems, but also conceptual systems in human cognition, and to type systems in programming languages.
Semantics of this form has not provided a very great challenge to that sketched in Tarski's
Semantic theory of truth , but many philosophers interested in reconstituting the semantics of logic in a way that respectsLudwig Wittgenstein 's "meaning is use" have felt that harmony holds the key.External links
* [http://consequently.org/edit/page/harmony Harmony] at Greg Restall's Proof and Consequence wiki
References
Prior, Arthur. "The runabout inference ticket." "Analysis", 21, pp38-39, 1960-61.
Belnap, Nuel D. Jr. "Tonk, Plonk, and Plink", "Analysis", 22, pp130-134, 1961-62.
Wikimedia Foundation. 2010.