- Weierstrass functions
In
mathematics , the Weierstrass functions arespecial function s of acomplex variable that are auxiliary to theWeierstrass elliptic function :wp(z)called 'pe'.
Weierstrass sigma-function
The Weierstrass sigma-function associated to a two-dimensional lattice LambdasubsetComplex is defined to be the product:sigma(z;Lambda)=zprod_{winLambda^{*left(1-frac{z}{w} ight) e^{z/w+frac{1}{2}(z/w)^2}where Lambda^{*} denotes Lambda-{ 0 }.
Weierstrass zeta-function
The Weierstrass zeta-function is defined by the sum:zeta(z;Lambda)=frac{sigma'(z;Lambda)}{sigma(z;Lambda)}=frac{1}{z}+sum_{winLambda^{*left( frac{1}{z-w}+frac{1}{w}+frac{z}{w^2} ight).
Note that the Weierstrass zeta-function is basically the
logarithmic derivative of the sigma-function. The zeta-function can be rewritten as::zeta(z;Lambda)=frac{1}{z}-sum_{k=1}^{infty}mathcal{G}_{2k+2}(Lambda)z^{2k+1}where mathcal{G}_{2k+2} is theEisenstein series of weight 2k+2.Also note that the derivative of the zeta-function is wp(z).
The Weierstrass zeta-function should not be confused with the Riemann zeta-function in number theory.
Weierstrass eta-function
The Weierstrass eta-function is defined to be:eta(w;Lambda)=zeta(z+w;Lambda)-zeta(z;Lambda), mbox{ for any } z in Complex
It can be proved that this is well-defined, i.e. zeta(z+w;Lambda)-zeta(z;Lambda) only depends on "w". The Weierstrass eta-function should not be confused with the Dedekind eta-function.
Wikimedia Foundation. 2010.