Weierstrass function — may also refer to the Weierstrass elliptic function ( ) or the Weierstrass sigma, zeta, or eta functions. Plot of Weierstrass Function over the interval [−2, 2]. Like fractals, the function exhibits self similarity: every zoom (red circle)… … Wikipedia
Karl Weierstrass — Infobox Scientist name = Karl Weierstrass |300px caption = Karl Theodor Wilhelm Weierstrass (Weierstraß) birth date = birth date|1815|10|31|mf=y birth place = Ostenfelde, Westphalia death date = death date and age|1897|2|19|1815|10|31|mf=y death… … Wikipedia
List of mathematics articles (W) — NOTOC Wad Wadge hierarchy Wagstaff prime Wald test Wald Wolfowitz runs test Wald s equation Waldhausen category Wall Sun Sun prime Wallenius noncentral hypergeometric distribution Wallis product Wallman compactification Wallpaper group Walrasian… … Wikipedia
Uniform convergence — In the mathematical field of analysis, uniform convergence is a type of convergence stronger than pointwise convergence. A sequence {fn} of functions converges uniformly to a limiting function f if the speed of convergence of fn(x) to f(x) does… … Wikipedia
Series (mathematics) — A series is the sum of the terms of a sequence. Finite sequences and series have defined first and last terms, whereas infinite sequences and series continue indefinitely.[1] In mathematics, given an infinite sequence of numbers { an } … Wikipedia
Lacunary function — In analysis, a lacunary function, also known as a lacunary series, is an analytic function that cannot be analytically continued anywhere outside the circle of convergence within which it is defined by a power series. The word lacunary is derived … Wikipedia
Convergent series — redirects here. For the short story collection, see Convergent Series (short story collection). In mathematics, a series is the sum of the terms of a sequence of numbers. Given a sequence , the nth partial sum Sn is the sum of the first n terms… … Wikipedia
Non-analytic smooth function — In mathematics, smooth functions (also called infinitely differentiable functions) and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is not … Wikipedia
Gibbs phenomenon — In mathematics, the Gibbs phenomenon (also known as ringing artifacts), named after the American physicist J. Willard Gibbs, is the peculiar manner in which the Fourier series of a piecewise continuously differentiable periodic function f behaves … Wikipedia
Convergence problem — In the analytic theory of continued fractions, the convergence problem is the determination of conditions on the partial numerators ai and partial denominators bi that are sufficient to guarantee the convergence of the continued fraction This… … Wikipedia