Nonnegative rank (linear algebra)

Nonnegative rank (linear algebra)

In linear algebra, the nonnegative rank of a nonnegative matrix is a concept similar to the usual linear rank of a real matrix, but adding the requirement that certain coefficients and entries of vectors/matrices have to be nonnegative.

For example, the linear rank of a matrix is the smallest number of vectors, such that every column of the matrix can be written as a linear combination of those vectors. For the nonnegative rank, it is required that the vectors must have nonnegative entries, and also that the coefficients in the linear combinations are nonnegative.

Contents

Formal Definition

There are several equivalent definitions, all modifying the definition of the linear rank slightly. Apart from the definition give above, there is the following: The nonnegative rank of a nonnegative m×n-matrix A is equal to the smallest number q such there exists a nonnegative m×q-matrix B and a nonnegative q×n-matrix C such that A = BC (the usual matrix product). To obtain the linear rank, drop the condition that B and C must be nonnegative.

Further, the nonnegative rank it the smallest number of nonnegative rank-one matrices into which the matrix can be decomposed additively:

 \mbox{rank}_+(A) = \min\{ q \mid \sum_{j=1}^q R_j = A, \; \mbox{rank}\,R_1=\dots=\mbox{rank}\,R_q =1, \; R_1,\dots,R_q \ge 0\}, where Rj ≥ 0 stands for "Rj is nonnegative".[1] (To obtain the usual linear rank, drop the condition that the Rj have to be nonnegative.) Given a nonnegative  m \times n matrix A the nonnegative rank rank + (A) of A satisfies

\mbox{rank}\,(A) \leq \mbox{rank}_+(A) \leq \min(m,n), where rank(A) denotes the usual linear rank of A.

A Fallacy

The rank of the matrix A is the largest number of columns which are linearly independent, i.e., none of the selected columns can be written as a linear combination of the other selected columns. It is not true that adding nonnegativity to this characterization gives the nonnegative rank: The nonnegative rank is in general strictly greater than the largest number of columns such that no selected column can be written as a nonnegative linear combination of the other selected columns.

Connection with the linear rank

It is always true that rank(A) ≤ rank+(A). In fact rank+(A) = rank(A) holds whenever rank(A) ≤ 2 [2].

In the case rank(A) ≥ 3, however, rank(A) < rank+(A) is possible. For example, the matrix

\mathbf{A} = \begin{bmatrix}
1 & 1 & 0 & 0\\
1 & 0 & 1 & 0\\
0 & 1 & 0 & 1\\
0 & 0 & 1 & 1 \end{bmatrix},

satisfies rank(A) = 3 < 4 = rank+(A) [2].

Computing the nonnegative rank

The nonnegative rank of a matrix can be determined algorithmically.[2]

It has been proved that determining whether rank + (A) = rank(A) is NP-hard.[3]

Obvious questions concerning the complexity of nonnegative rank computation remain unanswered to date. For example, the complexity of determining the nonnegative rank of matrices of fixed rank k is unknown for k > 2.

Ancillary Facts

Nonnegative rank has important applications in Combinatorial optimization:[4] The minimum number of facets of an extension of a polyhedron P is equal to the nonnegative rank of its so-called slack matrix.[5]

References

  1. ^ Abraham Berman and Robert J. Plemmons. Nonnegative Matrices in the Mathematical Sciences, SIAM
  2. ^ J. Cohen and U. Rothblum. "Nonnegative ranks, decompositions and factorizations of nonnegative matrices". Linear Algebra and its Applications, 190:149–168, 1993.
  3. ^ Stephen Vavasis, On the complexity of nonnegative matrix factorization, SIAM Journal on Optimization 20 (3) 1364-1377, 2009.
  4. ^ Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs. J. Comput. System Sci., 43(3):441–466, 1991.
  5. ^ See this blog post

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Rank (linear algebra) — The column rank of a matrix A is the maximum number of linearly independent column vectors of A. The row rank of a matrix A is the maximum number of linearly independent row vectors of A. Equivalently, the column rank of A is the dimension of the …   Wikipedia

  • Tensor algebra — In mathematics, the tensor algebra of a vector space V , denoted T ( V ) or T bull;( V ), is the algebra of tensors on V (of any rank) with multiplication being the tensor product. It is the free algebra on V , in the sense of being left adjoint… …   Wikipedia

  • List of mathematics articles (N) — NOTOC N N body problem N category N category number N connected space N dimensional sequential move puzzles N dimensional space N huge cardinal N jet N Mahlo cardinal N monoid N player game N set N skeleton N sphere N! conjecture Nabla symbol… …   Wikipedia

  • Singular value decomposition — Visualization of the SVD of a 2 dimensional, real shearing matrix M. First, we see the unit disc in blue together with the two canonical unit vectors. We then see the action of M, which distorts the disk to an ellipse. The SVD decomposes M into… …   Wikipedia

  • Perron–Frobenius theorem — In linear algebra, the Perron–Frobenius theorem, proved by Oskar Perron (1907) and Georg Frobenius (1912), asserts that a real square matrix with positive entries has a unique largest real eigenvalue and that the corresponding… …   Wikipedia

  • Matroid — In combinatorics, a branch of mathematics, a matroid (  /ˈmeɪ …   Wikipedia

  • Kernel (matrix) — In linear algebra, the kernel or null space (also nullspace) of a matrix A is the set of all vectors x for which Ax = 0. The kernel of a matrix with n columns is a linear subspace of n dimensional Euclidean space.[1] The dimension… …   Wikipedia

  • Matrix decomposition — In the mathematical discipline of linear algebra, a matrix decomposition is a factorization of a matrix into some canonical form. There are many different matrix decompositions; each finds use among a particular class of problems. Contents 1… …   Wikipedia

  • Optimal design — This article is about the topic in the design of experiments. For the topic in optimal control theory, see shape optimization. Gustav Elfving developed the optimal design of experiments, and so minimized surveyors need for theodolite measurements …   Wikipedia

  • Multivariate normal distribution — MVN redirects here. For the airport with that IATA code, see Mount Vernon Airport. Probability density function Many samples from a multivariate (bivariate) Gaussian distribution centered at (1,3) with a standard deviation of 3 in roughly the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”