Nonnegative matrix

Nonnegative matrix

A nonnegative matrix is a matrix in which all the elements are equal to or greater than zero

\mathbf{X} \geq 0, \qquad \forall i,j\, x_{ij} \geq 0.

A positive matrix is a matrix in which all the elements are greater than zero. The set of positive matrices is a subset of all non-negative matrices.

A non-negative matrix can represent a transition matrix for a Markov chain.

A rectangular non-negative matrix can be approximated by a decomposition with two other non-negative matrices via non-negative matrix factorization.

A positive matrix is not the same as a positive-definite matrix. A matrix that is both non-negative and positive semidefinite is called a doubly non-negative matrix.

Eigenvalues and eigenvectors of square positive matrices are described by the Perron–Frobenius theorem.

Contents

Inversion

The inverse of any non-singular M-matrix is a non-negative matrix. If the non-singular M-matrix is also symmetric then it is called a Stieltjes matrix.

The inverse of a non-negative matrix is usually not non-negative. The exception is the non-negative monomial matrices: a non-negative matrix has non-negative inverse if and only if it is a (non-negative) monomial matrix. Note that thus the inverse of a positive matrix is not positive or even non-negative, as positive matrices are not monomial, for dimension n > 1.

Specializations

There are a number of groups of matrices that form specializations of non-negative matrices, e.g. stochastic matrix; doubly stochastic matrix; symmetric non-negative matrix.

See Also

Metzler matrix

Bibliography

  1. Abraham Berman, Robert J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, 1994, SIAM. ISBN 0-89871-321-8.
  2. A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, 1979 (chapter 2), ISBN 0-12-092250-9
  3. R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, 1990 (chapter 8).
  4. Krasnosel'skii, M. A. (1964). Positive Solutions of Operator Equations. Groningen: P.Noordhoff Ltd. pp. 381 pp.. 
  5. Krasnosel'skii, M. A.; Lifshits, Je.A.; Sobolev, A.V. (1990). Positive Linear Systems: The method of positive operators. Sigma Series in Applied Mathematics. 5. Berlin: Helderman Verlag. pp. 354 pp.. 
  6. Henryk Minc, Nonnegative matrices, John Wiley&Sons, New York, 1988, ISBN 0-471-83966-3
  7. Seneta, E. Non-negative matrices and Markov chains. 2nd rev. ed., 1981, XVI, 288 p., Softcover Springer Series in Statistics. (Originally published by Allen & Unwin Ltd., London, 1973) ISBN: 978-0-387-29765-1
  8. Richard S. Varga 2002 Matrix Iterative Analysis, Second ed. (of 1962 Prentice Hall edition), Springer-Verlag.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Nonnegative rank (linear algebra) — In linear algebra, the nonnegative rank of a nonnegative matrix is a concept similar to the usual linear rank of a real matrix, but adding the requirement that certain coefficients and entries of vectors/matrices have to be nonnegative. For… …   Wikipedia

  • Matrix theory — is a branch of mathematics which focuses on the study of matrices. Initially a sub branch of linear algebra, it has grown to cover subjects related to graph theory, algebra, combinatorics, and statistics as well.HistoryThe term matrix was first… …   Wikipedia

  • Matrix decomposition — In the mathematical discipline of linear algebra, a matrix decomposition is a factorization of a matrix into some canonical form. There are many different matrix decompositions; each finds use among a particular class of problems. Contents 1… …   Wikipedia

  • Matrix pencil — If are complex matrices for some nonnegative integer l, and (the zero matrix), then the matrix pencil of degree l is the matrix valued function defined on the complex numbers A particular case is a linear matrix pencil …   Wikipedia

  • Non-negative matrix factorization — NMF redirects here. For the bridge convention, see new minor forcing. Non negative matrix factorization (NMF) is a group of algorithms in multivariate analysis and linear algebra where a matrix, , is factorized into (usually) two matrices, and… …   Wikipedia

  • Metzler matrix — In mathematics, a Metzler matrix is a matrix in which all the off diagonal components are nonnegative (equal to or greater than zero) It is named after the American economist Lloyd Metzler. Metzler matrices appear in stability analysis of time… …   Wikipedia

  • Quasipositive matrix — In mathematics, especially linear algebra, a matrix is called quasipositive if all of its elements are non negative except for those on the main diagonal, which are unconstrained. That is, a quasipositive matrix is any matrix A which… …   Wikipedia

  • Stochastic matrix — For a matrix whose elements are stochastic, see Random matrix In mathematics, a stochastic matrix (also termed probability matrix, transition matrix, substitution matrix, or Markov matrix) is a matrix used to describe the transitions of a Markov… …   Wikipedia

  • Positive-definite matrix — In linear algebra, a positive definite matrix is a matrix that in many ways is analogous to a positive real number. The notion is closely related to a positive definite symmetric bilinear form (or a sesquilinear form in the complex case). The… …   Wikipedia

  • Covariance matrix — A bivariate Gaussian probability density function centered at (0,0), with covariance matrix [ 1.00, .50 ; .50, 1.00 ] …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”