# Matrix representation

Matrix representation

Matrix representation is a method used by a computer language to store matrices of more than one dimension in memory. Fortran and C use different schemes. Fortran uses "Column Major", in which all the elements for a given column are stored contiguously in memory. C uses "Row Major", which stores all the elements for a given row contiguously in memory. LAPACK defines various matrix representations in memory. There is also Sparse matrix representation and Morton-order matrix representation. According to the documentation, in LAPACK the unitary matrix representation is optimized.[1] Some languages such as Java store matrices using Iliffe vectors. These are particularly useful for storing irregular matrices. Matrices are of primary importance in linear algebra.

## Basic mathematical operations

An m × n (read as m by n) order matrix is a set of numbers arranged in m rows and n columns. Matrices of the same order can be added by adding the corresponding elements. Two matrices can be multiplied, the condition being that the number of columns of the first matrix is equal to the number of rows of the second matrix. Hence, if an m × n matrix is multiplied with an n × r matrix, then the resultant matrix will be of the order m × r.[2]

Operations like row operations or column operations can be performed on a matrix, using which we can obtain the inverse of a matrix. The inverse may be obtained by determining the adjoint as well.[2]

## Basics of 2D array

The mathematical definition of a matrix finds applications in computing and database management, a basic starting point being the concept of arrays. A two-dimensional array can function exactly like a matrix. Two-dimensional arrays can be visualized as a table consisting of rows and columns.

• int a[3][4], declares an integer array of 3 rows and 4 columns. Index of row will start from 0 and will go up to 2.
• Similarly, index of column will start from 0 and will go up to 3.[3]
 Column 0 Column 1 Column 2 Column 3 row 0 a[0][0] a[0][1] a[0][2] [0][3] row 1 a[1][0] a[1][1] a[1][2] [1][3] row 2 a[2][0] a[2][1] a[2][2] [2][3]

This table shows arrangement of elements with their indices.

Initializing Two-Dimensional arrays: Two-Dimensional arrays may be initialized by providing a list of initial values.

int a[2][3] = {1,2,3,4,5,6,} or int a[2][3] = {{2,3,4},{4,4,5}};

Calculation of Address : An m x n matrix (a[1...m][1...n]) where the row index varies from 1 to m and column index from 1 to n,aij denotes the number in the ith row and the jth column. In the computer memory, all elements are stored linearly using contiguous addresses. Therefore,in order to store a two-dimensional matrix a, two dimensional address space must be mapped to one dimensional address space.In the computer's memory matrices are stored in either Row-major order or Column-major order form.

## References

1. ^ "Representation of Orthogonal or Unitary Matrices". University of Texas at Austin. Retrieved 14 September 2011.
2. ^ a b Ramana, B.V (2008). Higher Engineering Mathematics. New Delhi: Tata Mcgraw-Hill. ISBN 978-0-07-063419-0.
3. ^ Balagurusamy, E (2006). Programming in ANSI C. New Delhi: Tata McGraw-Hill.

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• matrix representation — matricinis atvaizdavimas statusas T sritis fizika atitikmenys: angl. matrix representation vok. Matrixdarstellung, f; Matrizendarstellung, f rus. матричное представление, n pranc. représentation matricielle, f …   Fizikos terminų žodynas

• matrix representation — matricinis vaizdavimas statusas T sritis fizika atitikmenys: angl. matrix representation vok. Matrixdarstellung, f rus. матричное представление, n pranc. représentation matricielle, f …   Fizikos terminų žodynas

• Matrix representation of conic sections — In mathematics, the matrix representation of conic sections is one way of studying a conic section, its axis, vertices, foci, tangents, and the relative position of a given point. We can also study conic sections whose axes aren t parallel to our …   Wikipedia

• Matrix theory — is a branch of mathematics which focuses on the study of matrices. Initially a sub branch of linear algebra, it has grown to cover subjects related to graph theory, algebra, combinatorics, and statistics as well.HistoryThe term matrix was first… …   Wikipedia

• Representation theory — This article is about the theory of representations of algebraic structures by linear transformations and matrices. For the more general notion of representations throughout mathematics, see representation (mathematics). Representation theory is… …   Wikipedia

• Matrix (mathematics) — Specific elements of a matrix are often denoted by a variable with two subscripts. For instance, a2,1 represents the element at the second row and first column of a matrix A. In mathematics, a matrix (plural matrices, or less commonly matrixes)… …   Wikipedia

• Representation of a Lie group — In mathematics and theoretical physics, the idea of a representation of a Lie group plays an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the… …   Wikipedia

• représentation matricielle — matricinis atvaizdavimas statusas T sritis fizika atitikmenys: angl. matrix representation vok. Matrixdarstellung, f; Matrizendarstellung, f rus. матричное представление, n pranc. représentation matricielle, f …   Fizikos terminų žodynas

• représentation matricielle — matricinis vaizdavimas statusas T sritis fizika atitikmenys: angl. matrix representation vok. Matrixdarstellung, f rus. матричное представление, n pranc. représentation matricielle, f …   Fizikos terminų žodynas

• Representation d'etat — Représentation d état En automatique, une représentation d état permet de modéliser un système dynamique sous forme matricielle en utilisant des variables d état. On se place alors dans un espace d état. Cette représentation, qui peut être… …   Wikipédia en Français