The following is the proof that
: abla ^2 left( {mathbf{u ight) = abla left( { abla cdot{mathbf{u} ight) - abla imes left( { abla imes {mathbf{u} ight) = leftlangle { abla ^2 u_x , abla ^2 u_y , abla ^2 u_z } ight angle.
This is a proof in Cartesian coordinates. This identity is only valid for Cartesian coordinates; completing the calculations in other coordinate systems will result in other solutions.
Let {mathbf{u = u,{mathbf{hat e_{mathbf{x + v,{mathbf{hat e_{mathbf{y + w,{mathbf{hat e_{mathbf{z = leftlangle {u,v,w} ight angle where u = u left( {x,y,z} ight) , v = v left( {x,y,z} ight) and w= w left( {x,y,z} ight)
:egin{align} abla ^2 left( {mathbf{u ight) &= abla left( { abla cdot leftlangle {u,v,w} ight angle } ight) - abla imes left( { abla imes leftlangle {u,v,w} ight angle } ight) \ &= abla left( {fracpartial upartial z} ight) - abla imes left| {egin{array}{*{20}c} mathbf{hat e_{mathbf{x } & mathbf{hat e_{mathbf{y } & mathbf{hat e_{mathbf{z } \ {frac{partial }partial x} & {frac{partial }partial y} & {frac{partial }partial z} \ u & v & w \ end{array} } ight| \ &= leftlangle {fracpartial ^2 upartial y} ight angle \ &= left( {fracpartial ^2 upartial ypartial z} ight){mathbf{hat e_{mathbf{z - left| {egin{array}{*{20}c} mathbf{hat e_{mathbf{x } & mathbf{hat e_{mathbf{y } & mathbf{hat e_{mathbf{z } \ {frac{partial }partial x} & {frac{partial }partial y} & {frac{partial }partial z} \ {fracpartial wpartial y} \ end{array} } ight| \ &= left( {egin{array}{*{20}c} {fracpartial ^2 upartial xpartial z} \ {fracpartial ^2 vpartial ypartial z} \ {fracpartial ^2 wpartial ypartial z} \ end{array} } ight)left{ mathbf{hat e_{mathbf{x ,{mathbf{hat e_{mathbf{y ,{mathbf{hat e_{mathbf{z } ight} + left( {egin{array}{*{20}c} { - fracpartial ^2 vpartial xpartial z} \ {fracpartial ^2 vpartial z^2 } \ { - fracpartial ^2 upartial ypartial z} \ end{array} } ight),left{ mathbf{hat e_{mathbf{x ,,{mathbf{hat e_{mathbf{y ,,{mathbf{hat e_{mathbf{z } ight} \ &= left( {egin{array}{*{20}c} {fracpartial ^2 upartial z^2 } \ {fracpartial ^2 vpartial y^2 } \ {fracpartial ^2 wpartial z^2 } \ end{array} } ight)left{ mathbf{hat e_{mathbf{x ,{mathbf{hat e_{mathbf{y ,{mathbf{hat e_{mathbf{z } ight} \ &= abla ^2 u,{mathbf{hat e_{mathbf{x + abla ^2 v,{mathbf{hat e_{mathbf{y + abla ^2 w,{mathbf{hat e_{mathbf{z \ end{align}
abla ^2 left( {mathbf{u ight) &= abla left( { abla cdot leftlangle {u,v,w} ight angle } ight) - abla imes left( { abla imes leftlangle {u,v,w} ight angle } ight) \
&= abla left( {fracpartial upartial z} ight) - abla imes left| {egin{array}{*{20}c} mathbf{hat e_{mathbf{x } & mathbf{hat e_{mathbf{y } & mathbf{hat e_{mathbf{z } \ {frac{partial }partial x} & {frac{partial }partial y} & {frac{partial }partial z} \ u & v & w \
end{array} } ight| \
&= leftlangle {fracpartial ^2 upartial y} ight angle \ &= left( {fracpartial ^2 upartial ypartial z} ight){mathbf{hat e_{mathbf{z - left| {egin{array}{*{20}c} mathbf{hat e_{mathbf{x } & mathbf{hat e_{mathbf{y } & mathbf{hat e_{mathbf{z } \ {frac{partial }partial x} & {frac{partial }partial y} & {frac{partial }partial z} \ {fracpartial wpartial y} \
end{array} } ight| \ &= left( {egin{array}{*{20}c} {fracpartial ^2 upartial xpartial z} \ {fracpartial ^2 vpartial ypartial z} \ {fracpartial ^2 wpartial ypartial z} \
end{array} } ight)left{ mathbf{hat e_{mathbf{x ,{mathbf{hat e_{mathbf{y ,{mathbf{hat e_{mathbf{z } ight} + left( {egin{array}{*{20}c} { - fracpartial ^2 vpartial xpartial z} \ {fracpartial ^2 vpartial z^2 } \ { - fracpartial ^2 upartial ypartial z} \
end{array} } ight),left{ mathbf{hat e_{mathbf{x ,,{mathbf{hat e_{mathbf{y ,,{mathbf{hat e_{mathbf{z } ight} \ &= left( {egin{array}{*{20}c} {fracpartial ^2 upartial z^2 } \ {fracpartial ^2 vpartial y^2 } \ {fracpartial ^2 wpartial z^2 } \
end{array} } ight)left{ mathbf{hat e_{mathbf{x ,{mathbf{hat e_{mathbf{y ,{mathbf{hat e_{mathbf{z } ight} \
&= abla ^2 u,{mathbf{hat e_{mathbf{x + abla ^2 v,{mathbf{hat e_{mathbf{y + abla ^2 w,{mathbf{hat e_{mathbf{z \ end{align}
Wikimedia Foundation. 2010.
Vector Laplacian — In mathematics and physics, the vector Laplace operator, denoted by scriptstyle abla^2, named after Pierre Simon Laplace, is a differential operator defined over a vector field. The vector Laplacian is similar to the scalar Laplacian. Whereas the … Wikipedia
List of mathematics articles (V) — NOTOC Vac Vacuous truth Vague topology Valence of average numbers Valentin Vornicu Validity (statistics) Valuation (algebra) Valuation (logic) Valuation (mathematics) Valuation (measure theory) Valuation of options Valuation ring Valuative… … Wikipedia
Eigenvalues and eigenvectors — For more specific information regarding the eigenvalues and eigenvectors of matrices, see Eigendecomposition of a matrix. In this shear mapping the red arrow changes direction but the blue arrow does not. Therefore the blue arrow is an… … Wikipedia
List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… … Wikipedia
List of mathematics articles (P) — NOTOC P P = NP problem P adic analysis P adic number P adic order P compact group P group P² irreducible P Laplacian P matrix P rep P value P vector P y method Pacific Journal of Mathematics Package merge algorithm Packed storage matrix Packing… … Wikipedia
Michael Atiyah — Sir Michael Atiyah Born 22 April 1929 (1929 04 22) (age 82) … Wikipedia
Chain rule — For other uses, see Chain rule (disambiguation). Topics in Calculus Fundamental theorem Limits of functions Continuity Mean value theorem Differential calculus Derivative Change of variables Implicit differentiation … Wikipedia
List of important publications in computer science — This is a list of important publications in computer science, organized by field. Some reasons why a particular publication might be regarded as important: Topic creator – A publication that created a new topic Breakthrough – A publication that… … Wikipedia
analysis — /euh nal euh sis/, n., pl. analyses / seez /. 1. the separating of any material or abstract entity into its constituent elements (opposed to synthesis). 2. this process as a method of studying the nature of something or of determining its… … Universalium
Product rule — For Euler s chain rule relating partial derivatives of three independent variables, see Triple product rule. For the counting principle in combinatorics, see Rule of product. Topics in Calculus Fundamental theorem Limits of functions Continuity… … Wikipedia