- Allopumiliotoxin
Allopumiliotoxins are a structural division in the pumiliotoxin-A class of
alkaloid s. The compounds of the pumiliotoxin-A class are primarily found in the skins of frogs, toads, and other amphibians and are used as a chemical defense mechanism to ward offpredator s,microorganism s, andectoparasite s. The compounds were originally discovered in neotropical dendrobatid frogs, but are also found in the mantellid frogs ofMadagascar , myobatrachid frogs ofAustralia , and bufonid toad ofSouth America . [Saporito, R. A.; Garraffo, H. M.; Donnelly, M. A.; Edwards, A.L.; Longino, J. T.; Daly, J. W. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 8045-8050.] Frogs possessing this defense mechanism haveaposematic coloring [Jain, P.; Garraffo, H. M.; Spande, T. F.; Yeh, H. J. C.; Daly, J. W. J. Nat. Prod. 1995, 58, 100-104.] .Biological Activity
The
Dendrobatidae family of poison-dart frogs has yielded many different alkaloids categorized into several different classes, almost all of which have shown high pharmacological activity on muscle and nerve cells [Aoyagi, S.; Wang, T. C.; Kibayashi, C. J. Am. Chem. Soc. 1993, 115, 11393-11409.] .The pumiliotoxin-A class, specifically, contains many molecules which have had a favorable effect on the heart. Allopumiliotoxins, the most complex member of this class, have a wide range of biological activities, the full understanding of which has not been fully discerned due their incredible complexity and subsequent synthetic difficulties. Among allopumiliotoxins, those with a β-oriented C-7
hydroxyl group have shown greater activity in comparison to α-epimers of this position. Allopumiliotoxin 339A has been shown to stimulate sodium influx and phosphoinositide breakdown in thecerebral cortical synaptoneurosomes ofguinea pigs and is one of the most active allopumiliotoxins. It is more biologically active than pumiliotoxin B, which has had similar biological affects on the secondary messenger system, causing muscle rigidity and some favorable effects on the heart. [Overman, L. E.; Robinson, L. A.; Zablocki, J. J. Am. Chem. Soc. 1992, 114, 368-369.]Pumiliotoxin s and allopumiliotoxins are very toxic in general. [Saporito, R. A.; Donnelly, M. A.; Jain, P.; Garraffo, H. M.; Spande, T. F.; Daly, J. W. Toxicon 2007, 50, 757-778.] . Pumiliotoxin B has caused death inmice when 20 μg was given in injections below the skin [Franklin, A. S.; Overman, L. E. Chem. Rev. 1996, 96, 502-522.]Nomenclature
There are three divisions within the pumiliotoxin-A class: allopumiliotoxins, pumiliotoxins, and homopumiliotoxins. Once the compound’s specific class is determined, it’s given a number based on its molecular weight. These biologically active compounds are complex and have structural variations that allow for specific molecular recognition. Therefore, the way 2
isomers are differentiated is by a letter after the number. Therefore, for example, allopumiliotoxin 339A is an allopumiliotoxin with amolecular weight of 339 g/mol but there are other isomers with the same molecular weight. Allopumiliotoxin 339A has an axially oriented hydroxyl group at the 7-position in the indolizidine nucleus that differentiates it from allopumiliotoxin 339B. [Aoyagi, S.; Wang, T. C.; Kibayashi, C. J. Am. Chem. Soc. 1993, 115, 11393-11409.] A (+) or (-) sign preceding the name of an allopumiliotoxin refers to the compound’s optical activity. Compounds that rotate a plane of polarized light clockwise are referred to as dextrorotatory and are preceded by a (+) sign. Compounds that rotate a plane of polarized light counterclockwise are referred to as levorotatory and are preceded by a (-) sign. [Bruice, P. Y. Organic Chemistry; Pearson Prentice Hall: Upper Saddle River, NJ, 2007; pp 212-213.]Structure
The different divisions of compounds in the pumiliotoxin-A class arise from differences in the carbon backbone and/or the substituents attached to it. The difference between allopumiliotoxins and
pumiliotoxin s occurs at the 7 position. At this position, allopumiliotoxins have ahydroxyl substituent whereaspumiliotoxin s have ahydrogen . Both havemethyl and hydroxyl groups at the C-8 position. Homopumiliotoxins contain a quinolizidine ring in the place of the indolizidine ring and methyl and hydroxyl groups at its C-9 position. All three contain an alkylidenyl side-chain. [Jain, P.; Garraffo, H. M.; Spande, T. F.; Yeh, H. J. C.; Daly, J. W. J. Nat. Prod. 1995, 58, 100-104.]Isolation
As stated previously, these alkaloids were first discovered in the skins of frogs. They can be isolated from the frog’s skin by mincing the skin and extracting the compounds by
trituration . A series of extractions involving an acid-base extraction are needed to isolate the allopumiliotoxins. The skins of the frogs may contain a number of different allopumiliotoxins. For example, the skin ofDendrobates tricolor was found to contain alkalkoids 251D, 271, 341A, and 323B. [Daly, J. W.; Tokuyama, T.; Fujiwara, T.; Highet, R. J.; Karle, I. L. J. Amer. Chem. Soc. 1980, 102, 830-836.] Also, different frogs contain different alkaloids in their skin.Dendrobates auratus , for example, was found to contain (+)-allopumiliotoxin 339A (a compound not present in the skin of Dendrobates tricolor). [Aoyagi, S.; Wang, T. C.; Kibayashi, C. J. Am. Chem. Soc. 1992, 114, 10653-10654.]Synthesis
Allopumiliotoxins are very biologically useful but are rare in nature. For this reason, many groups have researched syntheses for various
alkaloids of this type. The main problem with allopumiliotoxin synthesis arises from the alkylidene side chain because thestereochemistry of it can be difficult to control byWittig -type functionalizations. [Franklin, A. S.; Overman, L. E. Chem. Rev. 1996, 96, 502-522.] Total synthesis of (+)-allopumiliotoxin 267A was achieved using achiral dihydropyridone intermediate that was formed from the addition of ethyl lithiopropiolate to the N-acylpyridinium salt which results from the reaction of (+)-trans-2-(α-cumyl)cyclohexyl chloroformate and 4-methoxy-3-methyl-5(triisopropylsilyl)pyridine. This intermediate was then subjected to various additions and oxidations to yield the final allopumiliotoxin. The synthesis of (+)-allopumiliotoxin 323B’ has also been achieved using an intermediate from the previous synthesis. [Michael, J. P. Nat. Prod. Rep. 2002, 19, 719-741.] (+)-Allopumiliotoxin 339A has been synthesized using a iodide-promotediminium ion alkyne cyclization followed by condensation with acetylenic salt. Subsequent reactions led to theenantiopure product after 16 steps and a 7.5% yield. Other synthetic methods have been carried out for this molecule. One of which was achieved through the use of a Nozaki-Kishi Cyclization.Allopumiliotoxin 267A was synthesized using a similar cyclization. [Michael, J. P. Nat. Prod. Rep. 2002, 19, 719-741.]Analysis
The pumiliotoxin-A class compounds are typically analyzed by
GC-MS because the different classes show different prominent peaks. Allopumiliotoxins show corresponding ions of C4H8N+(m/z 70) and C10H16NO2+(m/z 182). The mass spectra ofpumiliotoxin s show prominent ions of C4H8N+ (m/z 70) and C10H16NO+ (m/z 166). Homopumiliotoxins exhibit prominent mass spectral fragment ions of C5H10N+ (m/z 84) and C11H18NO+ (m/z 180). [Jain, P.; Garraffo, H. M.; Spande, T. F.; Yeh, H. J. C.; Daly, J. W. J. Nat. Prod. 1995, 58, 100-104.]References
See also
*
Pumiliotoxin s
*Alkaloids
*Dendrobates
Wikimedia Foundation. 2010.