Kerr-Newman metric

Kerr-Newman metric

The Kerr-Newman metric is a solution of Einstein's general relativity field equation that describes the spacetime geometry in the region surrounding a charged, rotating mass. Like the Kerr metric, the interior solution exists mathematically and satisfies Einstein's field equations, but is probably not representative of the actual metric of a physical black hole due to stability issues.

Mathematical form

The Kerr-Newman metriccite journal | last = Kerr | first = RP | authorlink = Roy Kerr | year = 1963 | title = [http://prola.aps.org/abstract/PRL/v11/i5/p237_1 Gravitational field of a spinning mass as an example of algebraically special metrics] | journal = Physical Review Letters | volume = 11 | pages = 237–238 | doi = 10.1103/PhysRevLett.11.237] [cite book | last = Landau | first = LD | authorlink = Lev Landau | coauthors = Lifshitz, EM | year = 1975 | title = The Classical Theory of Fields (Course of Theoretical Physics, Vol. 2) | edition = revised 4th English ed. | publisher = Pergamon Press | location = New York | isbn = 978-0-08-018176-9 |pages = pp. 321–330] describes the geometry of spacetime in the vicinity of a mass "M" rotating with angular momentum "J" and charge "Q"

:egin{align}c^2 mathrm d au^2 & = left [ 1 - frac{r_s r - r_Q^2}{ ho^2} ight] c^2 mathrm d t^2- frac{ ho^2}{Lambda^2} mathrm d r^2 - ho^2 mathrm d heta^2 \& - left [ r^2 + alpha^2 + left( r_s r - r_Q^2 ight) frac{alpha^2}{ ho^2}sin^2 heta ight] sin^2 heta mathrm dphi^2 \& + left( r_s r - r_Q^2 ight) frac{2alphasin^2 heta}{ ho^2};c mathrm d t;mathrm dphiend{align}

where "r""s" is the Schwarzschild radius

:r_{s} = frac{2GM}{c^{2

and the length-scale "r""Q" corresponds to the electrical charge "Q"

:r_{Q}^{2} = frac{Q^{2}G}{4piepsilon_{0} c^{4

where 1/4π"ε"0 is Coulomb's force constant. The length-scales α, ρ and Λ have been introduced for brevity

:alpha = frac{J}{Mc}

: ho^{2} = r^{2} + alpha^{2} cos^{2} heta

:Lambda^{2} = r^{2} - r_{s} r + alpha^{2} + r_{Q}^{2}

Alternative mathematical form

The Kerr-Newman metric can also be written in geometrized units

:ds^{2}=-frac{Lambda^{2{ ho^{2left(dt-alphasin^{2} heta dphi ight)^{2}+frac{sin^{2} heta}{ ho^{2left [left(r^{2}+alpha^{2} ight)dphi-alpha dt ight] ^{2}+frac{ ho^{2{Lambda^{2dr^{2}+ ho^{2}d heta^{2}

:Lambda^{2} stackrel{mathrm{def{=} r^{2}-2Mr+alpha^{2}+Q^{2}: ho^{2} stackrel{mathrm{def{=} r^{2}+ alpha^{2}cos^{2} heta:alpha stackrel{mathrm{def{=} frac{J}{M}

where: "M" is the mass of the black hole: "J" is the angular momentum of the black hole: "Q" is the charge of the black hole

Special cases

The Kerr-Newman metric becomes the ...
* Kerr metric if the charge "Q" (or, equivalently, "r""Q") is zero.
* Reissner-Nordström metric if the angular momentum "J" (or, equivalently, "α") is zero.
* Schwarzschild metric if the charge "Q" and the angular momentum "J" are zero.
* orthogonal metric for the oblate spheroidal coordinates in the non-relativistic limit where "M" (or, equivalently, "r""s") goes to zero.

:c^{2} d au^{2} = c^{2} dt^{2} - frac{ ho^{2{r^{2} + alpha^{2 dr^{2} - ho^{2} d heta^{2}- left( r^{2} + alpha^{2} ight) sin^{2} heta dphi^{2} :which are equivalent to the Boyer-Lindquist coordinates [cite journal | last = Boyer | first = RH | coauthors = Lindquist RW | year = 1967 | title = Maximal Analytic Extension of the Kerr Metric | journal = J. Math. Phys. | volume = 8 | pages = 265–281 | doi = 10.1063/1.1705193] ::{x} = sqrt {r^2 + alpha^2} sin hetacosphi::{y} = sqrt {r^2 + alpha^2} sin hetasinphi::{z} = r cos heta quad

* empty Minkowski space but in a usual spherical coordinate system if M = Q = J = 0.

As for the Kerr metric, the Kerr-Newman metric defines a black hole only when :a^2 + Q^2 leq M^2.

Newman's result represents the most general stationary, axisymmetric asymptotically flat solution of Einstein's equations in the presence of an electromagnetic field in four dimensions. Since the matter content of the solution reduces to an electromagnetic field, it is referred as an electrovac solution of Einstein's equations. Although it represents a generalization of the Kerr metric, it is not considered as very important for astrophysical purposes since one does not expect that realistic black holes have an important electric charge.

The Kerr-Newman solution is named after Roy Kerr, discoverer of the uncharged rotating solution named after him (see Kerr metric) and Ezra T. Newman, co-discoverer of the charged solution in 1965.

History

In 1965, Ezra Newman found the axi-symmetric solution for Einstein's field equation for a black hole which is both rotating and electrically charged. This solution is called the Kerr-Newman metric. It is a generalisation of the Kerr metric.

ee also

* Kerr metric
* Reissner-Nordström metric
* Schwarzschild metric
* Rotating black hole
* Exact solutions in general relativity
* BKL singularity

References

*

ource(s)

* [http://scienceworld.wolfram.com/physics/Kerr-NewmanBlackHole.html Kerr-Newman Black Hole]
* [http://www.geocities.com/zcphysicsms/chap11.htm SR Made Easy, chapter 11: Charged and Rotating Black Holes and Their Thermodynamics]
* [http://rvgs.k12.va.us/electives/TRAP/students/ckafura/paper.html Black Holes: Where God Divided by Zero]


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Métrique de Kerr-Newman — Trou noir de Kerr Newman Pour les articles homonymes, voir Trou noir (homonymie). Article principal : Trou noir. En astronomie, un trou noir de Kerr Newman est un trou noir de masse M avec une charge électrique Q non nulle et un moment… …   Wikipédia en Français

  • Trou noir de kerr-newman — Pour les articles homonymes, voir Trou noir (homonymie). Article principal : Trou noir. En astronomie, un trou noir de Kerr Newman est un trou noir de masse M avec une charge électrique Q non nulle et un moment angulaire J également non nul …   Wikipédia en Français

  • Trou noir de Kerr-Newman — Pour les articles homonymes, voir Trou noir (homonymie). Article principal : Trou noir. En astronomie, un trou noir de Kerr Newman est un trou noir de masse M avec une charge électrique Q non nulle et un moment angulaire J également non nul …   Wikipédia en Français

  • Kerr metric — In general relativity, the Kerr metric (or Kerr vacuum) describes the geometry of spacetime around a rotating massive body. According to this metric, such rotating bodies should exhibit frame dragging, an unusual prediction of general relativity; …   Wikipedia

  • Metric tensor (general relativity) — This article is about metrics in general relativity. For a discussion of metrics in general, see metric tensor. Metric tensor of spacetime in general relativity written as a matrix. In general relativity, the metric tensor (or simply, the metric) …   Wikipedia

  • Kerr — may refer to:Places*Kerr, Montana, A US census designated place *Kerr County, Texas, USAOther uses*Alief Kerr High School, a public magnet school in Houston, Texas, USA *Dick, Kerr Co., locomotive manufacturer based in Scotland and England **… …   Wikipedia

  • Kerr-Metrik — Die Kerr Metrik [1] ist eine Vakuumlösung der einsteinschen Feldgleichungen für ungeladene, rotierende schwarze Löcher. Diese Lösung wird nach Roy Patrick Kerr benannt, der sie als erster berechnete. Das Linienelement lässt sich in Boyer… …   Deutsch Wikipedia

  • Schwarzschild metric — In Einstein s theory of general relativity, the Schwarzschild solution (or the Schwarzschild vacuum) describes the gravitational field outside a spherical, non rotating mass such as a (non rotating) star, planet, or black hole. It is also a good… …   Wikipedia

  • E. T. Newman — Ezra Ted Newman Ezra Ted Newman est un physicien états unis d Amérique actuellement en poste à l Université de Pittsburgh. Il a obtenu son doctorat à l université de Syracuse en 1956. Son domaine de recherche concerne la relativité générale et… …   Wikipédia en Français

  • Ezra T. Newman — Ezra Ted Newman Ezra Ted Newman est un physicien états unis d Amérique actuellement en poste à l Université de Pittsburgh. Il a obtenu son doctorat à l université de Syracuse en 1956. Son domaine de recherche concerne la relativité générale et… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”