Schwarz lemma

Schwarz lemma

In mathematics, the Schwarz lemma, named after Hermann Amandus Schwarz, is a result in complex analysis about holomorphic functions defined on the open unit disk.

Lemma statement

Let D = {z : |z| < 1} be the open unit disk in the complex plane C. Let f : D o overline D be a holomorphic function with f(0) = 0 .

The Schwarz lemma states that under these circumstances |f(z)| le |z| for all z in D, and |f'(0)| le 1.

Moreover, if the equality |f(z)| = |z| holds for any z e 0, or |f'(0)| = 1 then f is a rotation: f(z) = az with |a| = 1.

This lemma is less celebrated than stronger theorems, such as the Riemann mapping theorem, which it helps to prove; however, it is one of the simplest results capturing the "rigidity" of holomorphic functions. No similar result exists for real functions, of course.

To prove the lemma, one applies the maximum modulus principle to the function f(z)/z .

Proof

Let

:g(z) = frac{f(z)}{z}.,

The function "g"("z") is holomorphic in "D" since "f"(0) = 0 and "f" is holomorphic. Let "D""r" be a closed disc within "D" with radius "r". By the maximum modulus principle,

: |g(z)| = frac le frac{1}{r}

for all "z" in "D""r" and all "z""r" on the boundary of "D""r". As "r" approaches 1 we get |"g"("z")| &le; 1.

Moreover, if there exists a "z"0 in "D" such that "g"("z"0) = 1. Then, applying the maximum modulus principle to "g", we obtain that "g" is constant, hence "f"("z") = "kz", where "k" is constant and |"k"| = 1. This is also the case if |"f"'(0)| = 1.

chwarz-Pick theorem

A variant of the Schwarz lemma can be stated that is invariant under analytic automorphisms on the unit disk, i.e. bijective holomorphic mappings of the unit disc to itself. This variant is known as the Schwarz-Pick theorem (after Georg Pick):

Let fcolon D o D be holomorphic. Then, for all z_1,z_2in D,

:left|frac{f(z_1)-f(z_2)}{1-overline{f(z_1)}f(z_2)} ight
le frac{left|z_1-z_2 ight{left|1-overline{z_1}z_2 ight

and, for all zin D

:frac{left|f'(z) ight{1-left|f(z) ight|^2} lefrac{1}{1-left|z ight|^2}.

The expression

: d(z_1,z_2)= anh^{-1}left(frac{left|z_1-z_2 ight{left|1-overline{z_1}z_2 ight ight)

is the distance of the points z_1,z_2 in the Poincaré metric, i.e. the metric in the Poincaré disc model for hyperbolic geometry in dimension two. The Schwarz-Pick theorem then essentially states that a holomorphic map of the unit disk into itself "decreases" the distance of points in the Poincaré metric. If equality holds throughout in one of the two inequalities above (which is equivalent to saying that the holomorphic map preserves the distance in the Poincaré metric) , then "f" must be an analytic automorphism of the unit disc, given by a Möbius transformation mapping the unit disc to itself.

An analogous statement on the upper half-plane mathbb{H} can be made as follows:

Let fcolonmathbb{H} omathbb{H} be holomorphic. Then, for all z_1,z_2in mathbb{H},

:left|frac{f(z_1)-f(z_2)}{overline{f(z_1)}-f(z_2)} ight
le frac{left|z_1-z_2 ight{left|overline{z_1}-z_2 ight.

This is an easy consequence of the Schwarz-Pick theorem mentioned above: One just needs to remember that the Cayley transform W(z) = (z-i)/(z+i) maps the upper half-plane mathbb{H} conformally onto the unit disc D. Then, the map Wcirc fcirc W^{-1} is a holomorphic map from D onto D. Using the Schwarz-Pick theorem on this map, and finally simplifying the results by using the formula for W, we get the desired result. Also, for all zinmathbb{H},

:frac{left|f'(z) ight{mbox{Im }f(z)} le frac{1}{mbox{Im }(z)}.

If equality holds for either the one or the other expressions, then "f" must be a Möbius transformation with real coefficients. That is, if equality holds, then :f(z)=frac{az+b}{cz+d}with a,b,c,d being real numbers, and ad-bc>0.

Proof of Schwarz-Pick theorem

The proof of the Schwarz-Pick theorem follows from Schwarz's lemma and the fact that a Möbius transformation of the form frac{z-z_0}{overline{z_0}z-1} where |z_0|<1 maps the unit circle to itself. Fix z_1 and define the Möbius transformations M(z)=frac{z_1-z}{1-overline{z_1}z} and phi(z)=frac{f(z_1)-z}{1-overline{f(z_1)}z}.

Since M(z_1)=0 and the Möbius transformation is invertible, the composition phi(f(M^{-1}(z))) maps 0 to 0 and the unit disk is mapped into itself. Thus we can apply Schwarz's lemma, which is to say

|phi(f(M^{-1}(z)))|=left|frac{f(z_1)-f(M^{-1}(z))}{1-overline{f(z_1)}f(M^{-1}(z))} ight| le |z|.

Now calling z_2=M^{-1}(z) (which will still be in the unit disk) yields the desired conclusion

left|frac{f(z_1)-f(z_2)}{1-overline{f(z_1)}f(z_2)} ight| le left|frac{z_1-z_2}{1-overline{z_1}z_2} ight|.

To prove the second part of the theorem, we just let z_2 tend to z_1.

Further generalizations and related results

The Schwarz-Ahlfors-Pick theorem provides an analogous theorem for hyperbolic manifolds.

De Branges' theorem, formerly known as the Bieberbach Conjecture, is an important extension of the lemma, giving restrictions on the higher derivatives of "f" at 0 in case "f" is injective; that is, conformal.

The Koebe 1/4 theorem provides a related estimate in the case that "f" is conformal.

References

* Jurgen Jost, "Compact Riemann Surfaces" (2002), Springer-Verlag, New York. ISBN 3-540-43299-X "(See Section 2.3)"
*cite book | author = S. Dineen | title = The Schwarz Lemma | publisher = Oxford | year = 1989 | id=ISBN 0-19-853571-6


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Schwarz — is a common surname, derived from the German de. schwarz IPA2|ʃvaʁt͡s, meaning black. It may refer to:People*Alan Schwarz (born 1968), American writer *Annette Schwarz, German pornographic actress *Berthold Schwarz, Franciscan monk *Brinsley… …   Wikipedia

  • Schwarz–Ahlfors–Pick theorem — In mathematics, the Schwarz–Ahlfors–Pick theorem is an extension of the Schwarz lemma for hyperbolic geometry, such as the Poincaré half plane model. It states that the Poincaré metric is distance decreasing on harmonic functions.The theorem… …   Wikipedia

  • Lemma von Schwarz — Das schwarzsche Lemma (nach Hermann Schwarz) ist eine Aussage der Funktionentheorie über holomorphe Endomorphismen der Einheitskreisscheibe, welche einen Fixpunkt aufweisen. Inhaltsverzeichnis 1 Aussage 2 Beweisidee 3 Anwendungen 4 …   Deutsch Wikipedia

  • Schwarz (Begriffsklärung) — Das Wort Schwarz (von althochdeutsch swartz „schmutzfarbig“; urspr.: im Dunklen liegend) bezeichnet die Farbe Schwarz Schwarz (Familienname), siehe dort Etymologie, Varianten, Namensträger Schwarz (Roman), ein Roman Stephen Kings Schwarz (Album) …   Deutsch Wikipedia

  • Lemma von Schwarz-Pick — Das Lemma von Schwarz Pick (nach Hermann Schwarz und Georg Alexander Pick) ist eine Aussage aus der Funktionentheorie über holomorphe Endomorphismen des Einheitkreises, die das Schwarzsche Lemma verallgemeinert. Im Rahmen der hyperbolischen… …   Deutsch Wikipedia

  • Hermann Schwarz — See also Hermann Schwarz (philosopher) (1864 ndash;1951). : A different Hermann Schwarz was a founder of Rohde Schwarz, a German manufacturer of electronic test equipment. Infobox Scientist name = Hermann Schwarz image width = caption = Karl… …   Wikipedia

  • Herrmann Amandus Schwarz — Hermann Amandus Schwarz (* 25. Januar 1843 in Hermsdorf, Schlesien; † 30. November 1921 in Berlin) war ein deutscher Mathematiker. Mit seiner Ehefrau Marie, geb. Kummer (1842 1921), einer Tochter des Mathematikers Ernst Eduard Kummer und der… …   Deutsch Wikipedia

  • Hermann Amandus Schwarz — Karl Hermann Amandus Schwarz …   Deutsch Wikipedia

  • Céa's lemma — is a lemma in mathematics. It is an important tool for proving error estimates for the finite element method applied to elliptic partial differential equations. Contents 1 Lemma statement 2 Error estimate in the energy norm 3 …   Wikipedia

  • Schwarzsches Lemma — Das schwarzsche Lemma (nach Hermann Schwarz) ist eine Aussage der Funktionentheorie über holomorphe Endomorphismen der Einheitskreisscheibe, welche einen Fixpunkt aufweisen. Inhaltsverzeichnis 1 Aussage 2 Beweisidee 3 Anwendungen …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”