Tychonoff plank

Tychonoff plank

In topology, the Tychonoff plank is a topological space that is a counterexample to several plausible-sounding conjectures. It is defined as the product of the two ordinal space

[0,\omega_1]\times[0,\omega]

where ω is the first infinite ordinal and ω1 the first uncountable ordinal.

The deleted Tychonoff plank is obtained by deleting the point \infty = (\omega_1,\omega).

The Tychonoff plank is a compact Hausdorff space and is therefore a normal space. However, the deleted Tychonoff plank is non-normal. Therefore the Tychonoff plank is not completely normal. This shows that a subspace of a normal space need not be normal. The Tychonoff plank is not perfectly normal because it is not a Gδ space: the singleton \{\infty\} is closed but not a Gδ set.

References

External links