Arthur von Loy — Elise von Hohenhausen. Gemälde von Johann Joseph Sprick, 1840 Elise Felicitas Freiin von Hohenhausen, verehelichte Rüdiger alias Arthur von Loy (* 7. März 1812 in Eschwege; † 31. Januar 1899 in Berlin) war eine deutsche Schriftstellerin und … Deutsch Wikipedia
Maria Seebach — Marie Seebach, Lithographie von Joseph Kriehuber, 1855 Marie Seebach Marie Seebach (* 24. Februar 1829 in … Deutsch Wikipedia
Marie Seebach — Marie Seebach, Lithographie von Joseph Kriehuber, 1855 … Deutsch Wikipedia
Counterexamples in Topology — Author(s) Lynn Arthur Steen J. Ar … Wikipedia
Locally compact space — In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space.Formal definitionLet X be a topological space. The… … Wikipedia
Sierpiński space — In mathematics, Sierpiński space (or the connected two point set) is a finite topological space with two points, only one of which is closed.It is the smallest example of a topological space which is neither trivial nor discrete. It is named… … Wikipedia
Quasimetric space — In mathematics, a quasimetric space is a generalized metric space in which the metric is not necessarily symmetric. Although quasimetrics are common in real life, this notion is rarely used in mathematics, and its name is not entirely… … Wikipedia
Hjalmar Ekdal topology — In mathematics, the Hjalmar Ekdal topology is a special example in the theory of topological spaces. [Citation | last1=Steen | first1=Lynn Arthur | author1 link=Lynn Arthur Steen | last2=Seebach | first2=J. Arthur Jr. | author2 link=J. Arthur… … Wikipedia
Locally connected space — In this topological space, V is a neighbourhood of p and it contains a connected neighbourhood (the dark green disk) that contains p. In topology and other branches of mathematics, a topological space X is locally connected if every point admits… … Wikipedia
Completely Hausdorff space — Separation Axioms in Topological Spaces Kolmogorov (T0) version T0 | T1 | T2 | T2½ | completely T2 T3 | T3½ | T4 | T5 | T6 In topology, an Urysohn space, or T2½ spac … Wikipedia