Quartic interaction

Quartic interaction

In quantum field theory, a quartic interaction is a theory about a scalar field φ which contains an interaction term phi^4, and is considered by many teachers and students to be the simplest example of interacting fields. This theory consists of subtracting a frac{lambda}{4!} phi^4 term from the Klein–Gordon Lagrangian, where λ is a dimensionless coupling constant.

This article uses the + − − − sign convention

The Lagrangian

For a real scalar field the Lagrangian takes on the following form.

:mathcal{L}=frac{1}{2}partial^mu phi partial_mu phi -frac{m^2}{2}phi^2 -frac{lambda}{4!}phi^4

This Lagrangian has a global Z2 symmetry mapping φ to −φ.

For a complex scalar field the Lagrangian is,

:mathcal{L}=partial^mu phi^* partial_mu phi -m^2 phi^* phi -frac{lambda}{4}(phi^* phi)^2

With "n" real scalar fields, we can have a φ4 model with a global SO(N) symmetry

:mathcal{L}=frac{1}{2}partial^mu phi_a partial_mu phi_a - frac{m^2}{2}phi_a phi_a -frac{lambda}{8}(phi_a phi_a)^2.

With a background in Group Theory one could see that the model with one complex scalar is equivalent to the model with two real scalars with an SO(2) symmetry. See 1/N expansion.

In all of the models above, the coupling constant λ has to be nonnegative to preserve stability. This means that one is only concerned with relevant and marginal coupling constants. This is merely an experimental constraint as experimentalists do not have a means to probe energies where irrelevant coupling constants are significant.

In 4 dimensions, φ4 only exists as an interacting theory as an effective field theory. This is because of the Landau pole. Otherwise, renormalization will render the theory trivial.

If Λ is the cutoff scale of the theory, the renormalized mass would usually be of the order of Λ. "m"2 is said to have a quadratic divergence. See also supersymmetry.

Canonical quantization

:"Main article: canonical quantization"

This approach is "not" manifestly covariant.

Let the conjugate field to φ be π. Both fields are Hermitian. Start with the Schrödinger picture. Then, at an equal time, "t",

: [phi(vec{x}),phi(vec{y})] = [pi(vec{x}),pi(vec{y})] =0

and

: [phi(vec{x}),pi(vec{y})] =i delta(vec{x}-vec{y}).

See canonical commutation relations.

The Hamiltonian is

:H=int d^3x left [{1over 2}pi^2+{1over 2}( abla phi)^2+{m^2over 2}phi^2+{lambda over 4!}phi^4 ight] .

This is only partially true - see the Wick ordering correction later on in this article.

Use Fourier transforms on the fields to get to momentum space.

: ilde{phi}(vec{k})=int d^3x e^{-ivec{k}cdotvec{xphi(vec{x}): ilde{pi}(vec{k})=int d^3x e^{-ivec{k}cdotvec{xpi(vec{x}).

The quantity sqrt{k^2+m^2} is called the energy, "E", for reasons that will become apparent.

Define an operator a as follows:

:a(vec{k})=left(E ilde{phi}(vec{k})+i ilde{pi}(vec{k}) ight).

Then, its adjoint,

:a^dagger(vec{k})=left(E ilde{phi}(vec{k})-i ilde{pi}(vec{k}) ight).

These operators satisfy the commutation relations

: [a(vec{k}_1),a(vec{k}_2)] = [a^dagger(vec{k}_1),a^dagger(vec{k}_2)] =0: [a(vec{k}_1),a^dagger(vec{k}_2)] =(2pi)^3 2E delta(vec{k}_1-vec{k}_2).

These have the structure of creation and annihilation operators. The occupancy number

:n^dagger(vec{k})=a^dagger(vec{k})a(vec{k})

and the total number of particles (in the interaction picture),

:N=int {d^3k over (2pi)^3}{1over 2E}n(vec{k}),

which is always a nonnegative integer (well, only in the free field case, otherwise, it would be infinite).

"a" always reduces "N" by 1 wheareas a^dagger raises it by 1.

In terms of the creation and annihilation operators,

:H=int {d^3kover (2pi)^3}{1over 2E}Eleft(a^dagger(vec{k})a(vec{k})+(2pi)^3 Edelta(vec{0}) ight)+:+{lambdaover 4!}iiiint {d^3k_1over (2pi)^3 2E_1}{d^3k_2over (2pi)^3 2E_2}{d^3k_3over (2pi)^3 2E_3}{d^3k_4over (2pi)^3 2E_4} (2pi)^3 delta(vec{k}_1+vec{k}_2+vec{k}_3+vec{k}_4)left(a^dagger(vec{k}_1)+a(vec{k}_1) ight)left(a^dagger(vec{k}_2)+a(vec{k}_2) ight)left(a^dagger(vec{k}_3)+a(vec{k}_3) ight)left(a^dagger(vec{k}_4)+a(vec{k}_4) ight).

The first integral diverges badly. In particular, the Dirac delta term is called the zero point term. However, in the absence of general relativity, it does not matter what the total energy is, and since that term is infinite but constant, the Hamiltonian can simply be redefined by dropping it. The second term also has a huge divergence problem which can be resolved by replacing each polynomial in a and a^dagger with the Wick ordered polynomial where the creation operators always lie to the left of the annihilation operators. This definitely changes the Hamiltonian dynamics, but since quantization always has factor ordering ambiguities, this is perfectly alright.

The new and improved Hamiltonian,

::H:=int d^3x left [{1over 2}:pi^2:+{1over 2}:( abla phi)^2:+{m^2over 2}:phi^2:+{lambda over 4!}:phi^4: ight]

has a state |0> with N|0>=0 called the bare vacuum which is an eigenstate of :H: with zero energy. It is not the lowest energy, though, because of the last term.

The quadratic part is called the free Hamiltonian and the remainder the interaction Hamiltonian. Looking at the free Hamiltonian, it can be seen that each particle with a momentum of vec{k} has the energy sqrt{k^2+m^2}.

Use the Dyson series to undertake perturbation theory. This leads directly to Feynman diagrams.

While canonical quantization may look nice, Haag's theorem show the results are incorrect.

chwinger-Dyson equations

:"Main article: Schwinger-Dyson equation"

Using the source field method, we get the following Schwinger-Dyson equation for the generating functional:

:ipartial_mu partial^mu frac{delta}{delta J(x)}Z [J] +im^2frac{delta}{delta J(x)}Z [J] -frac{ilambda}{3!}frac{delta^3}{delta J(x)^3}Z [J] +J(x)Z [J] =0.

Note that since

:frac{delta^3}{delta J(x)^3}

is not well-defined because

:frac{delta^3}{delta J(x_1)delta J(x_2) delta J(x_3)}Z [J]

is a distribution in

:"x"1, "x"2 and "x"3,

this equation needs to be regularized.

In this example, the bare propagator, D is the Green's function for -partial^mu partial_mu-m^2 and so, the SD set of equation goes as

:langlepsi|mathcal{T}{phi(x_0)phi(x_1)}|psi angle=iD(x_0,x_1)+frac{lambda}{3!}int d^dx_2 D(x_0,x_2)langlepsi|mathcal{T}{phi(x_1)phi(x_2)phi(x_2)phi(x_2)}|psi angle

:langlepsi|mathcal{T}{phi(x_0)phi(x_1)phi(x_2)phi(x_3)}|psi angle=iD(x_0,x_1)langlepsi|mathcal{T}{phi(x_2)phi(x_3)}|psi angle+iD(x_0,x_2)langlepsi|mathcal{T}{phi(x_1)phi(x_3)}|psi angle+iD(x_0,x_3)langlepsi|mathcal{T}{phi(x_1)phi(x_2)}|psi angle+frac{lambda}{3!}int d^dx_4D(x_0,x_4)langlepsi|mathcal{T}{phi(x_1)phi(x_2)phi(x_3)phi(x_4)phi(x_4)phi(x_4)}|psi angle

etc.

ψ> can be any state, not just the vacuum state.

There are many techniques to solve the Schwinger-Dyson equations iteratively.

Path integrals

:"Main article: path integral formulation"

Consider Feynman's approach.

In the source field approach,

:Z [J] =int mathcal{D}phi e^{iint d^4x left({1over 2}partial^mu phi partial_mu phi -{m^2 over 2}phi^2-{lambdaover 4!}phi^4+Jphi ight)}

where the spacetime integral is slightly Wick rotated to give the correct pole prescriptions.

The time ordered vacuum expectation values of polynomials in φ is given by

:langleOmega|mathcal{T}{hat{phi}(x_1)cdots hat{phi}(x_n)}|Omega angle=frac{int mathcal{D}phi phi(x_1)cdots phi(x_n) e^{iint d^4x left({1over 2}partial^mu phi partial_mu phi -{m^2 over 2}phi^2-{lambdaover 4!}phi^4 ight){int mathcal{D}phi e^{iint d^4x left({1over 2}partial^mu phi partial_mu phi -{m^2 over 2}phi^2-{lambdaover 4!}phi^4 ight).

Here, the hats distinguish the operators from the classical fields.

Everything could be Wick rotated to get a φ4 statistical mechanics theory over a 4-dimensional Euclidean space. Set the inverse temperature β to 1. Alternatively, rescale φ so that different temperatures correspond to different λs.

Then,

:Z [J] =int mathcal{D}phi e^{-int d^4x left({1over 2}( ablaphi)^2+{m^2 over 2}phi^2+{lambdaover 4!}phi^4+Jphi ight)}

and

:langlephi(x_1)cdots phi(x_n) angle=frac{int mathcal{D}phi phi(x_1)cdots phi(x_n) e^{-int d^4x left({1over 2}( ablaphi)^2+{m^2 over 2}phi^2+{lambdaover 4!}phi^4 ight){int mathcal{D}phi e^{-int d^4x left({1over 2}( ablaphi)^2+{m^2 over 2}phi^2+{lambdaover 4!}phi^4 ight).

The standard trick to evaluate this functional integral is to use the Gaussian integral approximation. This gives the following Feynman rules in momentum space:

To evaluate the n-point correlation function, assign an external leg to each φ and assign it the momentum of the Fourier transform. Sum over all possible bubbleless Feynman diagrams. For each diagram, assign a momentum to each edge such that the momenta flowing into each vertex is zero and integrate over all flows and divide by the symmetry factor.

Renormalization

:"Main article: renormalization"

Making actual calculations using any of the many methods given above (they are all essentially equivalent) would show divergent integrals. That's why the theory needs renormalization.

pontaneous symmetry breaking

:"Main article: spontaneous symmetry breaking"

An interesting feature can occur if "m"2 happens to be negative, but with λ still positive. Below the phase transition, the vacuum superselection sector splits into two, each of which is in the ordered phase, spontaneously breaking the Z2 global symmetry of the original theory. Also, interesting collective states like domain walls can appear.

ee also

*Scalar field theory


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Quantum chromodynamics — Standard model of particle physics Standard Model …   Wikipedia

  • Scalar field theory — In theoretical physics, scalar field theory can refer to a classical or quantum theory of scalar fields. A field which is invariant under any Lorentz transformation is called a scalar , in contrast to a vector or tensor field. The quanta of the… …   Wikipedia

  • Landau pole — In physics, Landau pole is the energy scale (or the precise value of the energy) where a coupling constant (the strength of an interaction) of a quantum field theory becomes infinite. Such a possibility was pointed out by the physicist Lev… …   Wikipedia

  • Nambu–Jona-Lasinio model — In quantum field theory, the Nambu–Jona Lasinio model (or more precisely: the Nambu and Jona Lasinio model) is a theory of nucleons and mesons constructed from interacting Dirac fermions with chiral symmetry which parallels the construction of… …   Wikipedia

  • Introduction to gauge theory — This article is an accessible, non technical introduction to the subject. For the main encyclopedia article, see Gauge theory. Quantum field theory …   Wikipedia

  • Noncommutative quantum field theory — In mathematical physics, noncommutative quantum field theory (or quantum field theory on noncommutative spacetime) is an application of noncommutative mathematics to the spacetime of quantum field theory that is an outgrowth of noncommutative… …   Wikipedia

  • Chiral model — In nuclear physics, the chiral model is a phenomenological model describing mesons in the chiral limit where the masses of the quarks go to zero (without mentioning quarks at all). It s a nonlinear sigma model with the principal homogeneous space …   Wikipedia

  • Non-linear sigma model — In quantum field theory, a nonlinear σ model describes a scalar field Σ which takes on values in a nonlinear manifold called the target manifold T. The target manifold is equipped with a Riemannian metric g. Σ is a differentiable map from… …   Wikipedia

  • Chern–Simons theory — The Chern–Simons theory is a 3 dimensional topological quantum field theory of Schwarz type, introduced by Edward Witten. It is so named because its action is proportional to the integral of the Chern–Simons 3 form. In condensed matter physics,… …   Wikipedia

  • mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”