Hilbert-Schmidt integral operator

Hilbert-Schmidt integral operator

In mathematics, a Hilbert-Schmidt integral operator is a type of integral transform. Specifically, given a domain (an open and connected set) Ω in "n"-dimensional Euclidean space R"n", a Hilbert-Schmidt kernel is a function "k" : Ω × Ω → C with

:int_{Omega} int_{Omega} | k(x, y) |^{2} ,dx , dy < + infty

and the associated Hilbert-Schmidt integral operator is the operator "K" : "L"2(&Omega;; C) &rarr; "L"2(&Omega;; C) given by

:(K u) (x) = int_{Omega} k(x, y) u(y) , dy.

Hilbert-Schmidt integral operators are both continuous (and hence bounded) and compact.

See also

* Hilbert-Schmidt operator

References

* cite book
author = Renardy, Michael and Rogers, Robert C.
title = An introduction to partial differential equations
series = Texts in Applied Mathematics 13
edition = Second edition
publisher = Springer-Verlag
location = New York
year = 2004
pages = 356
isbn = 0-387-00444-0
(Sections 7.1 and 7.5)


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Hilbert–Schmidt operator — In mathematics, a Hilbert–Schmidt operator is a bounded operator A on a Hilbert space H with finite Hilbert–Schmidt norm, meaning that there exists an orthonormal basis {e i : i in I} of H with the property:sum {iin I} |Ae i|^2 < infty. If this… …   Wikipedia

  • Hilbert-Schmidt — In mathematics, Hilbert Schmidt may refer to* a Hilbert Schmidt operator; ** a Hilbert Schmidt integral operator; * the Hilbert Schmidt theorem …   Wikipedia

  • Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… …   Wikipedia

  • Integral equation — In mathematics, an integral equation is an equation in which an unknown function appears under an integral sign. There is a close connection between differential and integral equations, and some problems may be formulated either way. See, for… …   Wikipedia

  • David Hilbert — Hilbert redirects here. For other uses, see Hilbert (disambiguation). David Hilbert David Hilbert (1912) Born …   Wikipedia

  • Compact operator — In functional analysis, a branch of mathematics, a compact operator is a linear operator L from a Banach space X to another Banach space Y, such that the image under L of any bounded subset of X is a relatively compact subset of Y. Such an… …   Wikipedia

  • Nuklearer Operator — Die Spurklasse Operatoren werden in der mathematischen Disziplin der Funktionalanalysis untersucht. Sie bilden eine wichtige Klasse von linearen Operatoren auf unendlich dimensionalen Räumen. Bei ihnen bleiben im Gegensatz zu allgemeinen… …   Deutsch Wikipedia

  • Spurklasse-Operator — Die Spurklasse Operatoren werden in der mathematischen Disziplin der Funktionalanalysis untersucht. Sie bilden eine wichtige Klasse von linearen Operatoren auf unendlich dimensionalen Räumen. Bei ihnen bleiben im Gegensatz zu allgemeinen… …   Deutsch Wikipedia

  • Volterra operator — In mathematics, in the area of functional analysis and operator theory, the Volterra operator represents the operation of indefinite integration, viewed as a bounded linear operator on the space L 2(0,1) of complex valued square integrable… …   Wikipedia

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”