Analytic Fredholm theorem
- Analytic Fredholm theorem
In mathematics, the analytic Fredholm theorem is a result concerning the existence of bounded inverses for a family of bounded linear operators on a Hilbert space. It is the basis of two classical and important theorems, the Fredholm alternative and Hilbert-Schmidt theorems. The result is named after the Swedish mathematician Erik Ivar Fredholm.
tatement of the theorem
Let "G" ⊆ C be a domain (an open and connected set). Let ("H", ⟨ , ⟩) be a real or complex Hilbert space and let Lin("H") denote the space of bounded linear operators from "H" into itself; let I denote the identity operator. Let "B" : "G" → Lin("H") be a mapping such that
* "B" is analytic on "G" in the sense that that the limit
::
: exists for all "λ"0 ∈ "G"; and
* the operator "B"("λ") is a compact operator for each "λ" ∈ "G".
Then either
* (I − "B"("λ"))−1 does not exist for any "λ" ∈ "G"; or
* (I − "B"("λ"))−1 exists for every "λ" ∈ "G" "S", where "S" is a discrete subset of "G" (i.e., "S" has no limit points in "G"). In this case, the function taking "λ" to (I − "B"("λ"))−1 is analytic on "G" "S" and, if "λ" ∈ "S", then the equation
::
: has a finite-dimensional family of solutions.
References
* cite book
author = Renardy, Michael and Rogers, Robert C.
title = An introduction to partial differential equations
series = Texts in Applied Mathematics 13
edition = Second edition
publisher = Springer-Verlag
location = New York
year = 2004
pages = 356
id = ISBN 0-387-00444-0 (Theorem 7.92)
Wikimedia Foundation.
2010.
Look at other dictionaries:
Erik Ivar Fredholm — Infobox Scientist name = Erik Ivar Fredholm box width = image width =150px caption = Erik Ivar Fredholm birth date = April 7, 1866 birth place = death date = August 17, 1927 death place = residence = citizenship = nationality = Swedish ethnicity … Wikipedia
Atiyah–Singer index theorem — In the mathematics of manifolds and differential operators, the Atiyah–Singer index theorem states that for an elliptic differential operator on a compact manifold, the analytical index (closely related to the dimension of the space of solutions) … Wikipedia
List of mathematics articles (A) — NOTOC A A Beautiful Mind A Beautiful Mind (book) A Beautiful Mind (film) A Brief History of Time (film) A Course of Pure Mathematics A curious identity involving binomial coefficients A derivation of the discrete Fourier transform A equivalence A … Wikipedia
List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… … Wikipedia
Фредгольм — Фредгольм, Эрик Ивар Эрик Ивар Фредгольм Дата рождения: 9 (7) апреля 1866(1866 04 07) Место рождения: Стокгольм Дата смерти … Википедия
Фредгольм, Эрик Ивар — Эрик Ивар Фредгольм Дата рождения: 9 (7) апреля 1866(1866 04 07) Место рождения: Стокгольм Дата смерти … Википедия
Séminaire Nicolas Bourbaki (1950–1959) — Continuation of the Séminaire Nicolas Bourbaki programme, for the 1950s. 1950/51 series *33 Armand Borel, Sous groupes compacts maximaux des groupes de Lie, d après Cartan, Iwasawa et Mostow (maximal compact subgroups) *34 Henri Cartan, Espaces… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Série lacunaire — En mathématiques, et plus précisément en analyse, une série lacunaire (aussi connue sous le nom de fonction lacunaire) est une série entière (ou la fonction somme de cette série entière) présentant des lacunes, c est à dire dont un grand nombre… … Wikipédia en Français
Josip Plemelj — Infobox Person name=Josip Plemelj caption=Josip Plemelj as a student in Vienna, 1896deletable image caption quotation= birth date=birth date|1873|12|11|mf=y birth place=Grad na Bledu, Slovenia dead=dead death date=death date and… … Wikipedia